Search Results for

    Show / Hide Table of Contents

    Class WishartEstimator

    Estimates a Wishart distribution from samples.

    Inheritance
    Object
    WishartEstimator
    Implements
    Estimator<Wishart>
    Accumulator<Wishart>
    Accumulator<PositiveDefiniteMatrix>
    SettableTo<WishartEstimator>
    ICloneable
    Inherited Members
    Object.Equals(Object)
    Object.Equals(Object, Object)
    Object.GetHashCode()
    Object.GetType()
    Object.MemberwiseClone()
    Object.ReferenceEquals(Object, Object)
    Object.ToString()
    Namespace: Microsoft.ML.Probabilistic.Distributions
    Assembly: Microsoft.ML.Probabilistic.dll
    Syntax
    public class WishartEstimator : Estimator<Wishart>, Accumulator<Wishart>, Accumulator<PositiveDefiniteMatrix>, SettableTo<WishartEstimator>, ICloneable
    Remarks
        The distribution is estimated via moment matching (not maximum-likelihood).
        E[X] = (a+(d+1)/2)/B
        var(X_ii) = (a+(d+1)/2)*diag(inv(B))^2
        because X_ii ~ Gamma(a+(d+1)/2, 1/diag(inv(B))).
        Therefore: 
        a = E[X_ii]^2/var(X_ii) - (d+1)/2
        B = (a+(d+1)/2)/E[X]

    Constructors

    WishartEstimator(Int32)

    Creates a new Wishart estimator

    Declaration
    public WishartEstimator(int dimension)
    Parameters
    Type Name Description
    Int32 dimension

    The dimension of the Wishart distribution

    Fields

    mva

    Where to accumulate mean and variance matrices

    Declaration
    public MatrixMeanVarianceAccumulator mva
    Field Value
    Type Description
    MatrixMeanVarianceAccumulator

    Properties

    Dimension

    The dimension of the Wishart distribution

    Declaration
    public int Dimension { get; }
    Property Value
    Type Description
    Int32

    Methods

    Add(Wishart)

    Adds a Wishart distribution item to the estimator

    Declaration
    public void Add(Wishart item)
    Parameters
    Type Name Description
    Wishart item

    The distribution instance to add

    Add(Wishart, Double)

    Declaration
    public void Add(Wishart item, double weight)
    Parameters
    Type Name Description
    Wishart item
    Double weight

    Add(PositiveDefiniteMatrix)

    Adds a sample to the estimator

    Declaration
    public void Add(PositiveDefiniteMatrix item)
    Parameters
    Type Name Description
    PositiveDefiniteMatrix item

    The sample to add

    Add(PositiveDefiniteMatrix, Double)

    Declaration
    public void Add(PositiveDefiniteMatrix item, double weight)
    Parameters
    Type Name Description
    PositiveDefiniteMatrix item
    Double weight

    Clear()

    Clears the estimator

    Declaration
    public void Clear()

    Clone()

    Returns a clone of this estimator.

    Declaration
    public object Clone()
    Returns
    Type Description
    Object

    GetDistribution(Wishart)

    Retrieves the Wishart estimator

    Declaration
    public Wishart GetDistribution(Wishart result)
    Parameters
    Type Name Description
    Wishart result

    Where to put the result

    Returns
    Type Description
    Wishart

    The resulting distribution

    SetTo(WishartEstimator)

    Sets the state of this estimator from the specified estimator.

    Declaration
    public void SetTo(WishartEstimator value)
    Parameters
    Type Name Description
    WishartEstimator value

    Implements

    Estimator<T>
    Accumulator<T>
    Accumulator<T>
    SettableTo<T>
    System.ICloneable
    In This Article
    Back to top Copyright © .NET Foundation. All rights reserved.