Class Wishart
A Wishart distribution on positive definite matrices.
Implements
Inherited Members
Namespace: Microsoft.ML.Probabilistic.Distributions
Assembly: Microsoft.ML.Probabilistic.dll
Syntax
[Serializable]
[DataContract]
[Quality(QualityBand.Mature)]
public class Wishart : IDistribution<PositiveDefiniteMatrix>, IDistribution, ICloneable, HasPoint<PositiveDefiniteMatrix>, CanGetLogProb<PositiveDefiniteMatrix>, SettableTo<Wishart>, SettableToProduct<Wishart>, SettableToProduct<Wishart, Wishart>, Diffable, SettableToUniform, Sampleable<PositiveDefiniteMatrix>, SettableToRatio<Wishart>, SettableToRatio<Wishart, Wishart>, SettableToPower<Wishart>, CanGetMean<PositiveDefiniteMatrix>, CanGetVariance<PositiveDefiniteMatrix>, CanGetMeanAndVariance<PositiveDefiniteMatrix, PositiveDefiniteMatrix>, CanSetMeanAndVariance<PositiveDefiniteMatrix, PositiveDefiniteMatrix>, CanGetLogAverageOf<Wishart>, CanGetLogAverageOfPower<Wishart>, SettableToWeightedSum<Wishart>, CanGetAverageLog<Wishart>, CanGetLogNormalizer, CanGetMode<PositiveDefiniteMatrix>
Remarks
In the matrix case, the distribution is
p(X) = |X|^(a-(d+1)/2)*exp(-tr(X*B))*|B|^a/Gamma_d(a)
.
In this code, the a
parameter is called the "Shape" and the B
parameter
is called the "Rate". The distribution is uniform when B=0 and a=(d+1)/2.
The mean of the distribution is a/B
and the diagonal variance is
var(X_ii) = a*C_ii^2
where C=inv(B)
. The non-diagonal variances are
var(X_ij) = a*0.5*(C_ij^2 + C_ii*C_jj)
where C=inv(B)
.
The distribution is represented by a double for a
and
a PositiveDefiniteMatrix for B
.
Constructors
Wishart()
Parameterless constructor needed for serialization
Declaration
protected Wishart()
Wishart(Double, PositiveDefiniteMatrix)
Constructs a multi-dimensional Wishart with given shape and scale matrix
Declaration
public Wishart(double shape, PositiveDefiniteMatrix scale)
Parameters
Type | Name | Description |
---|---|---|
Double | shape | The shape parameter |
PositiveDefiniteMatrix | scale | The scale matrix |
Wishart(Double, Double)
Creates a one-dimensional Wishart with given shape and scale
Declaration
public Wishart(double shape, double scale)
Parameters
Type | Name | Description |
---|---|---|
Double | shape | The shape parameter |
Double | scale | The one-dimesional scale |
Wishart(Int32)
Constructs a uniform Wishart distribution of the given dimension
Declaration
public Wishart(int dimension)
Parameters
Type | Name | Description |
---|---|---|
Int32 | dimension | The dimension |
Wishart(Int32, Double, Double)
Constructs a multi-dimensional Wishart with given shape and with a scale matrix which is set to a scaled identity matrix
Declaration
public Wishart(int dimension, double shape, double scale)
Parameters
Type | Name | Description |
---|---|---|
Int32 | dimension | The dimension |
Double | shape | The shape parameter |
Double | scale | Used to scale the identity matrix |
Properties
Dimension
Dimension of this distribution
Declaration
[IgnoreDataMember]
public int Dimension { get; }
Property Value
Type | Description |
---|---|
Int32 |
IsPointMass
Asks whether the instance is a point mass
Declaration
[IgnoreDataMember]
public bool IsPointMass { get; }
Property Value
Type | Description |
---|---|
Boolean |
Point
Sets/gets this instance as a point-mass
Declaration
[IgnoreDataMember]
public PositiveDefiniteMatrix Point { get; set; }
Property Value
Type | Description |
---|---|
PositiveDefiniteMatrix |
Rate
Sets/gets the rate matrix
Declaration
public PositiveDefiniteMatrix Rate { get; set; }
Property Value
Type | Description |
---|---|
PositiveDefiniteMatrix |
Shape
Sets/gets the shape value
Declaration
public double Shape { get; set; }
Property Value
Type | Description |
---|---|
Double |
Methods
Clone()
Clones this Wishart.
Declaration
public object Clone()
Returns
Type | Description |
---|---|
Object | An object which is a clone of the current instance. This must be cast if you want to assign the result to a Wishart type |
Equals(Object)
Override of the Equals method
Declaration
public override bool Equals(object thatd)
Parameters
Type | Name | Description |
---|---|---|
Object | thatd | The instance to compare to |
Returns
Type | Description |
---|---|
Boolean | True if the two distributions are the same in value, false otherwise |
Overrides
FromMeanAndMeanLogDeterminant(PositiveDefiniteMatrix, Double, Wishart)
Constructs a Wishart distribution with the given mean and mean log determinant.
Declaration
public static Wishart FromMeanAndMeanLogDeterminant(PositiveDefiniteMatrix mean, double meanLogDet, Wishart result = null)
Parameters
Type | Name | Description |
---|---|---|
PositiveDefiniteMatrix | mean | Desired expected value. |
Double | meanLogDet | Desired expected log determinant. |
Wishart | result |
Returns
Type | Description |
---|---|
Wishart | A new Wishart distribution. |
Remarks
This function is equivalent to maximum-likelihood estimation of a Wishart distribution from data given by sufficient statistics. This function is significantly slower than the other constructors since it involves nonlinear optimization. The algorithm is a generalized Newton iteration, described in "Estimating a Gamma distribution" by T. Minka, 2002.
FromShapeAndRate(Double, PositiveDefiniteMatrix)
Creates a multi-dimensional Wishart with given shape and rate matrix
Declaration
[Construction(new string[]{"Shape", "Rate"})]
public static Wishart FromShapeAndRate(double shape, PositiveDefiniteMatrix rate)
Parameters
Type | Name | Description |
---|---|---|
Double | shape | The shape parameter |
PositiveDefiniteMatrix | rate | The rate matrix |
Returns
Type | Description |
---|---|
Wishart | A new Wishart distribution |
FromShapeAndRate(Int32, Double, Double)
Creates a multi-dimensional Wishart with given shape and with a rate matrix which is set to a scaled identity matrix
Declaration
public static Wishart FromShapeAndRate(int dimension, double shape, double rate)
Parameters
Type | Name | Description |
---|---|---|
Int32 | dimension | The dimension |
Double | shape | The shape parameter |
Double | rate | Used to scale the identity matrix |
Returns
Type | Description |
---|---|
Wishart | A new Wishart distribution |
FromShapeAndScale(Double, PositiveDefiniteMatrix)
Creates a new multi-dimensional Wishart with given shape and scale matrix
Declaration
public static Wishart FromShapeAndScale(double shape, PositiveDefiniteMatrix scale)
Parameters
Type | Name | Description |
---|---|---|
Double | shape | The shape parameter |
PositiveDefiniteMatrix | scale | The scale matrix |
Returns
Type | Description |
---|---|
Wishart | A new Wishart distribution |
FromShapeAndScale(Int32, Double, Double)
Creates a multi-dimensional Wishart with given shape and with a scale matrix which is set to a scaled identity matrix
Declaration
public static Wishart FromShapeAndScale(int dimension, double shape, double scale)
Parameters
Type | Name | Description |
---|---|---|
Int32 | dimension | The dimension |
Double | shape | The shape parameter |
Double | scale | Used to scale the identity matrix |
Returns
Type | Description |
---|---|
Wishart | A new Wishart distribution |
GetAverageLog(Wishart)
The expected logarithm of that distribution under this distribution.
Declaration
public double GetAverageLog(Wishart that)
Parameters
Type | Name | Description |
---|---|---|
Wishart | that | The distribution to take the logarithm of. |
Returns
Type | Description |
---|---|
Double |
|
Remarks
This is also known as the cross entropy.
GetHashCode()
Override of GetHashCode method
Declaration
public override int GetHashCode()
Returns
Type | Description |
---|---|
Int32 | The hash code for this instance |
Overrides
GetLogAverageOf(Wishart)
Gets the log-integral of the product of this Wishart with another Wishart
Declaration
public double GetLogAverageOf(Wishart that)
Parameters
Type | Name | Description |
---|---|---|
Wishart | that | The other Wishart |
Returns
Type | Description |
---|---|
Double | The log inner product |
GetLogAverageOfPower(Wishart, Double)
Get the integral of this distribution times another distribution raised to a power.
Declaration
public double GetLogAverageOfPower(Wishart that, double power)
Parameters
Type | Name | Description |
---|---|---|
Wishart | that | |
Double | power |
Returns
Type | Description |
---|---|
Double |
GetLogNormalizer()
Gets the normalizer for the density function of this Wishart distribution
Declaration
public double GetLogNormalizer()
Returns
Type | Description |
---|---|
Double |
GetLogNormalizer(Double, PositiveDefiniteMatrix)
Gets the normalizer for a Wishart density function specified by shape and rate matrix
Declaration
public static double GetLogNormalizer(double shape, PositiveDefiniteMatrix rate)
Parameters
Type | Name | Description |
---|---|---|
Double | shape | Shape parameter |
PositiveDefiniteMatrix | rate | rate matrix |
Returns
Type | Description |
---|---|
Double |
GetLogProb(PositiveDefiniteMatrix)
Evaluates the logarithm of this Wishart density function at a given point
Declaration
public double GetLogProb(PositiveDefiniteMatrix X)
Parameters
Type | Name | Description |
---|---|---|
PositiveDefiniteMatrix | X | Where to evaluate the density |
Returns
Type | Description |
---|---|
Double | The log density |
GetLogProb(PositiveDefiniteMatrix, Double, PositiveDefiniteMatrix)
Evaluates the logarithm of a Wishart density function at a given point
Declaration
public static double GetLogProb(PositiveDefiniteMatrix x, double shape, PositiveDefiniteMatrix rate)
Parameters
Type | Name | Description |
---|---|---|
PositiveDefiniteMatrix | x | Where to evaluate the density |
Double | shape | Shape parameter |
PositiveDefiniteMatrix | rate | Rate matrix |
Returns
Type | Description |
---|---|
Double | The log density |
Remarks
The distribution is p(X) = |X|^(a-(d+1)/2)exp(-tr(XB))*|B|^a/Gamma_d(a)
.
When a <= (d-1)/2 the Gamma_d(a)
term is dropped.
When B <= 0 the |B|^a
term is dropped.
Thus if shape = (d+1)/2 and rate = 0 the density is 1.
GetMean()
Gets the mean of the distribution.
Declaration
public PositiveDefiniteMatrix GetMean()
Returns
Type | Description |
---|---|
PositiveDefiniteMatrix | A new PositiveDefiniteMatrix. |
GetMean(PositiveDefiniteMatrix)
Gets the mean of the distribution.
Declaration
public PositiveDefiniteMatrix GetMean(PositiveDefiniteMatrix mean)
Parameters
Type | Name | Description |
---|---|---|
PositiveDefiniteMatrix | mean | Where to put the mean matrix |
Returns
Type | Description |
---|---|
PositiveDefiniteMatrix | The mean matrix |
GetMeanAndVariance(PositiveDefiniteMatrix, PositiveDefiniteMatrix)
Gets the mean and variance matrices.
Declaration
public void GetMeanAndVariance(PositiveDefiniteMatrix mean, PositiveDefiniteMatrix variance)
Parameters
Type | Name | Description |
---|---|---|
PositiveDefiniteMatrix | mean | Where to put the mean - assumed to be of the correct size |
PositiveDefiniteMatrix | variance | Where to put the variance - assumed to be of the correct size |
GetMeanLogDeterminant()
Gets the mean log determinant
Declaration
public double GetMeanLogDeterminant()
Returns
Type | Description |
---|---|
Double | The mean log determinant |
GetMode()
Declaration
public PositiveDefiniteMatrix GetMode()
Returns
Type | Description |
---|---|
PositiveDefiniteMatrix |
GetMode(PositiveDefiniteMatrix)
Declaration
public PositiveDefiniteMatrix GetMode(PositiveDefiniteMatrix result)
Parameters
Type | Name | Description |
---|---|---|
PositiveDefiniteMatrix | result |
Returns
Type | Description |
---|---|
PositiveDefiniteMatrix |
GetScale()
Gets the scale matrix
Declaration
public PositiveDefiniteMatrix GetScale()
Returns
Type | Description |
---|---|
PositiveDefiniteMatrix | A new PositiveDefiniteMatrix. |
GetVariance()
Gets the variance of the distribution
Declaration
public PositiveDefiniteMatrix GetVariance()
Returns
Type | Description |
---|---|
PositiveDefiniteMatrix | The variance matrix |
GetVariance(PositiveDefiniteMatrix)
Gets the variance of the distribution
Declaration
public PositiveDefiniteMatrix GetVariance(PositiveDefiniteMatrix variance)
Parameters
Type | Name | Description |
---|---|---|
PositiveDefiniteMatrix | variance | Where to put the variance |
Returns
Type | Description |
---|---|
PositiveDefiniteMatrix | The variance matrix |
IsProper()
Asks whether this instance is proper
Declaration
public bool IsProper()
Returns
Type | Description |
---|---|
Boolean | True if proper, false otherwise |
IsProper(Double, PositiveDefiniteMatrix)
Asks whether a Wishart distribution of the specified shape and rate is proper
Declaration
public static bool IsProper(double shape, PositiveDefiniteMatrix rate)
Parameters
Type | Name | Description |
---|---|---|
Double | shape | Shape parameter |
PositiveDefiniteMatrix | rate | Rate matrix |
Returns
Type | Description |
---|---|
Boolean | True if proper, false otherwise |
IsUniform()
Asks whether this instance is uniform
Declaration
public bool IsUniform()
Returns
Type | Description |
---|---|
Boolean |
MaxDiff(Object)
The maximum difference between the parameters of this Wishart and that Wishart
Declaration
public double MaxDiff(object thatd)
Parameters
Type | Name | Description |
---|---|---|
Object | thatd | That Wishart |
Returns
Type | Description |
---|---|
Double | The maximum difference |
PointMass(PositiveDefiniteMatrix)
Creates a Wishart point mass at the specified location
Declaration
[Construction(new string[]{"Point"}, UseWhen = "IsPointMass")]
public static Wishart PointMass(PositiveDefiniteMatrix mean)
Parameters
Type | Name | Description |
---|---|---|
PositiveDefiniteMatrix | mean | The location of the point-mass |
Returns
Type | Description |
---|---|
Wishart | A new point mass Wishart distribution |
PointMass(Double)
Creates a Wishart point mass at the specified location
Declaration
public static Wishart PointMass(double mean)
Parameters
Type | Name | Description |
---|---|---|
Double | mean | The location of the point-mass is a vector where every element equals this value |
Returns
Type | Description |
---|---|
Wishart | A new point mass Wishart distribution |
Sample()
Samples this Wishart distribution. Workspaces and sample matrix are allocated behind the scenes
Declaration
public PositiveDefiniteMatrix Sample()
Returns
Type | Description |
---|---|
PositiveDefiniteMatrix | The sample |
Sample(PositiveDefiniteMatrix)
Samples this Wishart distribution. Workspaces are allocated behind the scenes
Declaration
public PositiveDefiniteMatrix Sample(PositiveDefiniteMatrix result)
Parameters
Type | Name | Description |
---|---|---|
PositiveDefiniteMatrix | result | Where to put the sample |
Returns
Type | Description |
---|---|
PositiveDefiniteMatrix | The sample |
Sample(PositiveDefiniteMatrix, LowerTriangularMatrix, LowerTriangularMatrix, Matrix)
Samples this Wishart distribution
Declaration
public PositiveDefiniteMatrix Sample(PositiveDefiniteMatrix result, LowerTriangularMatrix cholB, LowerTriangularMatrix cholX, Matrix cholXt)
Parameters
Type | Name | Description |
---|---|---|
PositiveDefiniteMatrix | result | Where to put the sample |
LowerTriangularMatrix | cholB | A workspace matrix of the same dimension as the distribution |
LowerTriangularMatrix | cholX | A workspace matrix of the same dimension as the distribution |
Matrix | cholXt | A workspace matrix of the same dimension as the distribution |
Returns
Type | Description |
---|---|
PositiveDefiniteMatrix | The sample |
Sample(Double, PositiveDefiniteMatrix, PositiveDefiniteMatrix)
Samples a Wishart distribution of specified shape and rate. Workspaces are allocated behind the scenes
Declaration
public static PositiveDefiniteMatrix Sample(double shape, PositiveDefiniteMatrix scale, PositiveDefiniteMatrix result)
Parameters
Type | Name | Description |
---|---|---|
Double | shape | The shape parameter |
PositiveDefiniteMatrix | scale | The scale matrix |
PositiveDefiniteMatrix | result | Where to put the sample |
Returns
Type | Description |
---|---|
PositiveDefiniteMatrix | The sample |
SampleFromShapeAndRate(Double, PositiveDefiniteMatrix)
Samples a Wishart distribution of specified shape and rate. Workspaces are allocated behind the scenes
Declaration
[ParameterNames(new string[]{"sample", "shape", "rate"})]
public static PositiveDefiniteMatrix SampleFromShapeAndRate(double shape, PositiveDefiniteMatrix rate)
Parameters
Type | Name | Description |
---|---|---|
Double | shape | The shape parameter |
PositiveDefiniteMatrix | rate | The rate matrix |
Returns
Type | Description |
---|---|
PositiveDefiniteMatrix | The sample |
SampleFromShapeAndRate(Double, PositiveDefiniteMatrix, PositiveDefiniteMatrix)
Samples a Wishart distribution of specified shape and rate. Workspaces are allocated behind the scenes
Declaration
public static PositiveDefiniteMatrix SampleFromShapeAndRate(double shape, PositiveDefiniteMatrix rate, PositiveDefiniteMatrix result)
Parameters
Type | Name | Description |
---|---|---|
Double | shape | The shape parameter |
PositiveDefiniteMatrix | rate | The rate matrix |
PositiveDefiniteMatrix | result | Receives the sample |
Returns
Type | Description |
---|---|
PositiveDefiniteMatrix |
|
SampleFromShapeAndScale(Double, PositiveDefiniteMatrix)
Samples a Wishart distribution of specified shape and scale. Workspaces are allocated behind the scenes
Declaration
[ParameterNames(new string[]{"sample", "shape", "scale"})]
public static PositiveDefiniteMatrix SampleFromShapeAndScale(double shape, PositiveDefiniteMatrix scale)
Parameters
Type | Name | Description |
---|---|---|
Double | shape | The shape parameter |
PositiveDefiniteMatrix | scale | The scale matrix |
Returns
Type | Description |
---|---|
PositiveDefiniteMatrix | The sample |
SetDerivatives(LowerTriangularMatrix, PositiveDefiniteMatrix, PositiveDefiniteMatrix, Double, Boolean, Double)
Modify the parameters so that the pdf has the given derivatives at a point.
Declaration
public void SetDerivatives(LowerTriangularMatrix xChol, PositiveDefiniteMatrix invX, PositiveDefiniteMatrix dlogp, double xxddlogp, bool forceProper, double shapeOffset = 0)
Parameters
Type | Name | Description |
---|---|---|
LowerTriangularMatrix | xChol | Cholesky factor of the point X |
PositiveDefiniteMatrix | invX | Inverse of X. Can be the same object as |
PositiveDefiniteMatrix | dlogp | Desired derivative. Can be the same object as |
Double | xxddlogp | tr(x tr(x dlogp')/dx) |
Boolean | forceProper | If true and both derivatives cannot be matched, match only the first. |
Double | shapeOffset |
SetMeanAndVariance(PositiveDefiniteMatrix, PositiveDefiniteMatrix)
Sets the parameters to produce a given mean and variance.
Declaration
public void SetMeanAndVariance(PositiveDefiniteMatrix mean, PositiveDefiniteMatrix variance)
Parameters
Type | Name | Description |
---|---|---|
PositiveDefiniteMatrix | mean | Mean |
PositiveDefiniteMatrix | variance | Variance |
Remarks
The mean is always matched, but the variance may not match exactly, since the distribution has only one scalar parameter for variance.
SetShapeAndRate(Double, PositiveDefiniteMatrix)
Sets the shape parameter and the rate matrix parameter for this instance
Declaration
public void SetShapeAndRate(double shape, PositiveDefiniteMatrix rate)
Parameters
Type | Name | Description |
---|---|---|
Double | shape | The shape parameter |
PositiveDefiniteMatrix | rate | The rate matrix |
SetShapeAndScale(Double, PositiveDefiniteMatrix)
Sets the shape parameter and the scale matrix parameter for this instance
Declaration
public void SetShapeAndScale(double shape, PositiveDefiniteMatrix scale)
Parameters
Type | Name | Description |
---|---|---|
Double | shape | The shape parameter |
PositiveDefiniteMatrix | scale | The scale matrix |
SetTo(Wishart)
Sets this Wishart instance to have the parameter values of another Wishart instance
Declaration
public void SetTo(Wishart that)
Parameters
Type | Name | Description |
---|---|---|
Wishart | that | The other Wishart |
SetToPointMass()
Sets this instance to a point mass. The location of the point mass is the existing rate matrix
Declaration
protected void SetToPointMass()
SetToPower(Wishart, Double)
Sets the parameters to represent the power of a source Wishart to some exponent.
Declaration
public void SetToPower(Wishart dist, double exponent)
Parameters
Type | Name | Description |
---|---|---|
Wishart | dist | The source Wishart |
Double | exponent | The exponent |
SetToProduct(Wishart, Wishart)
Sets the parameters to represent the product of two Wisharts.
Declaration
public void SetToProduct(Wishart g1, Wishart g2)
Parameters
Type | Name | Description |
---|---|---|
Wishart | g1 | The first Wishart. May refer to |
Wishart | g2 | The second Wishart. May refer to |
Remarks
The result may not be proper. No error is thrown in this case.
SetToRatio(Wishart, Wishart, Boolean)
Sets the parameters to represent the ratio of two Wisharts.
Declaration
public void SetToRatio(Wishart numerator, Wishart denominator, bool forceProper = false)
Parameters
Type | Name | Description |
---|---|---|
Wishart | numerator | The numerator Wishart. Can be |
Wishart | denominator | The denominator Wishart |
Boolean | forceProper | If true, the result shape >= (dimension+1)/2 and rate is non-negative definite |
SetToSum(Double, Wishart, Double, Wishart)
Weighted mixture distribution for two Wisharts
Declaration
public void SetToSum(double weight1, Wishart dist1, double weight2, Wishart dist2)
Parameters
Type | Name | Description |
---|---|---|
Double | weight1 | First weight |
Wishart | dist1 | First Wishart |
Double | weight2 | Second weight |
Wishart | dist2 | Second Wishart |
SetToUniform()
Sets this instance to have uniform distribution
Declaration
public void SetToUniform()
ToString()
ToString override
Declaration
public override string ToString()
Returns
Type | Description |
---|---|
String | String representation of the instance |
Overrides
Uniform(Int32)
Constructs a uniform Wishart distribution of the given dimension
Declaration
[Construction(new string[]{"Dimension"}, UseWhen = "IsUniform")]
public static Wishart Uniform(int dimension)
Parameters
Type | Name | Description |
---|---|---|
Int32 | dimension | The dimension |
Returns
Type | Description |
---|---|
Wishart |
WeightedSum<T>(T, Int32, Double, T, Double, T)
Creates a weighted mixture distribution for distributions whose mean and variance are both of type PositiveDefiniteMatrix. The distribution type must implement CanGetMeanAndVariance<MeanType, VarType> and CanSetMeanAndVariance<MeanType, VarType>
Declaration
public static T WeightedSum<T>(T result, int dimension, double weight1, T dist1, double weight2, T dist2)
where T : CanGetMeanAndVariance<PositiveDefiniteMatrix, PositiveDefiniteMatrix>, CanSetMeanAndVariance<PositiveDefiniteMatrix, PositiveDefiniteMatrix>, SettableToUniform, SettableTo<T>
Parameters
Type | Name | Description |
---|---|---|
T | result | Resulting distribution |
Int32 | dimension | The dimension of the domain |
Double | weight1 | The first weight |
T | dist1 | The first distribution |
Double | weight2 | The second weight |
T | dist2 | The second distribution |
Returns
Type | Description |
---|---|
T |
Type Parameters
Name | Description |
---|---|
T | Distribution type for the mixture |
Operators
Division(Wishart, Wishart)
Creates a new Wishart which is the ratio of two other Wishart
Declaration
public static Wishart operator /(Wishart numerator, Wishart denominator)
Parameters
Type | Name | Description |
---|---|---|
Wishart | numerator | numerator Wishart |
Wishart | denominator | denominator Wishart |
Returns
Type | Description |
---|---|
Wishart | Result |
ExclusiveOr(Wishart, Double)
Raises a distribution to a power.
Declaration
public static Wishart operator ^(Wishart dist, double exponent)
Parameters
Type | Name | Description |
---|---|---|
Wishart | dist | The distribution. |
Double | exponent | The power to raise to. |
Returns
Type | Description |
---|---|
Wishart |
|
Multiply(Wishart, Wishart)
Creates a new Wishart which the product of two other Wisharts
Declaration
public static Wishart operator *(Wishart a, Wishart b)
Parameters
Type | Name | Description |
---|---|---|
Wishart | a | First Wishart |
Wishart | b | Second Wishart |
Returns
Type | Description |
---|---|
Wishart | Result |