Search Results for

    Show / Hide Table of Contents

    Class Wishart

    A Wishart distribution on positive definite matrices.

    Inheritance
    Object
    Wishart
    Implements
    IDistribution<PositiveDefiniteMatrix>
    IDistribution
    ICloneable
    HasPoint<PositiveDefiniteMatrix>
    CanGetLogProb<PositiveDefiniteMatrix>
    SettableTo<Wishart>
    SettableToProduct<Wishart>
    SettableToProduct<Wishart, Wishart>
    Diffable
    SettableToUniform
    Sampleable<PositiveDefiniteMatrix>
    SettableToRatio<Wishart>
    SettableToRatio<Wishart, Wishart>
    SettableToPower<Wishart>
    CanGetMean<PositiveDefiniteMatrix>
    CanGetVariance<PositiveDefiniteMatrix>
    CanGetMeanAndVariance<PositiveDefiniteMatrix, PositiveDefiniteMatrix>
    CanSetMeanAndVariance<PositiveDefiniteMatrix, PositiveDefiniteMatrix>
    CanGetLogAverageOf<Wishart>
    CanGetLogAverageOfPower<Wishart>
    SettableToWeightedSum<Wishart>
    CanGetAverageLog<Wishart>
    CanGetLogNormalizer
    CanGetMode<PositiveDefiniteMatrix>
    Inherited Members
    Object.Equals(Object, Object)
    Object.GetType()
    Object.MemberwiseClone()
    Object.ReferenceEquals(Object, Object)
    Namespace: Microsoft.ML.Probabilistic.Distributions
    Assembly: Microsoft.ML.Probabilistic.dll
    Syntax
    [Serializable]
    [DataContract]
    [Quality(QualityBand.Mature)]
    public class Wishart : IDistribution<PositiveDefiniteMatrix>, IDistribution, ICloneable, HasPoint<PositiveDefiniteMatrix>, CanGetLogProb<PositiveDefiniteMatrix>, SettableTo<Wishart>, SettableToProduct<Wishart>, SettableToProduct<Wishart, Wishart>, Diffable, SettableToUniform, Sampleable<PositiveDefiniteMatrix>, SettableToRatio<Wishart>, SettableToRatio<Wishart, Wishart>, SettableToPower<Wishart>, CanGetMean<PositiveDefiniteMatrix>, CanGetVariance<PositiveDefiniteMatrix>, CanGetMeanAndVariance<PositiveDefiniteMatrix, PositiveDefiniteMatrix>, CanSetMeanAndVariance<PositiveDefiniteMatrix, PositiveDefiniteMatrix>, CanGetLogAverageOf<Wishart>, CanGetLogAverageOfPower<Wishart>, SettableToWeightedSum<Wishart>, CanGetAverageLog<Wishart>, CanGetLogNormalizer, CanGetMode<PositiveDefiniteMatrix>
    Remarks

    In the matrix case, the distribution is p(X) = |X|^(a-(d+1)/2)*exp(-tr(X*B))*|B|^a/Gamma_d(a). In this code, the a parameter is called the "Shape" and the B parameter is called the "Rate". The distribution is uniform when B=0 and a=(d+1)/2. The mean of the distribution is a/B and the diagonal variance is var(X_ii) = a*C_ii^2 where C=inv(B). The non-diagonal variances are var(X_ij) = a*0.5*(C_ij^2 + C_ii*C_jj) where C=inv(B).

    The distribution is represented by a double for a and a PositiveDefiniteMatrix for B.

    Constructors

    Wishart()

    Parameterless constructor needed for serialization

    Declaration
    protected Wishart()

    Wishart(Double, PositiveDefiniteMatrix)

    Constructs a multi-dimensional Wishart with given shape and scale matrix

    Declaration
    public Wishart(double shape, PositiveDefiniteMatrix scale)
    Parameters
    Type Name Description
    Double shape

    The shape parameter

    PositiveDefiniteMatrix scale

    The scale matrix

    Wishart(Double, Double)

    Creates a one-dimensional Wishart with given shape and scale

    Declaration
    public Wishart(double shape, double scale)
    Parameters
    Type Name Description
    Double shape

    The shape parameter

    Double scale

    The one-dimesional scale

    Wishart(Int32)

    Constructs a uniform Wishart distribution of the given dimension

    Declaration
    public Wishart(int dimension)
    Parameters
    Type Name Description
    Int32 dimension

    The dimension

    Wishart(Int32, Double, Double)

    Constructs a multi-dimensional Wishart with given shape and with a scale matrix which is set to a scaled identity matrix

    Declaration
    public Wishart(int dimension, double shape, double scale)
    Parameters
    Type Name Description
    Int32 dimension

    The dimension

    Double shape

    The shape parameter

    Double scale

    Used to scale the identity matrix

    Properties

    Dimension

    Dimension of this distribution

    Declaration
    [IgnoreDataMember]
    public int Dimension { get; }
    Property Value
    Type Description
    Int32

    IsPointMass

    Asks whether the instance is a point mass

    Declaration
    [IgnoreDataMember]
    public bool IsPointMass { get; }
    Property Value
    Type Description
    Boolean

    Point

    Sets/gets this instance as a point-mass

    Declaration
    [IgnoreDataMember]
    public PositiveDefiniteMatrix Point { get; set; }
    Property Value
    Type Description
    PositiveDefiniteMatrix

    Rate

    Sets/gets the rate matrix

    Declaration
    public PositiveDefiniteMatrix Rate { get; set; }
    Property Value
    Type Description
    PositiveDefiniteMatrix

    Shape

    Sets/gets the shape value

    Declaration
    public double Shape { get; set; }
    Property Value
    Type Description
    Double

    Methods

    Clone()

    Clones this Wishart.

    Declaration
    public object Clone()
    Returns
    Type Description
    Object

    An object which is a clone of the current instance. This must be cast if you want to assign the result to a Wishart type

    Equals(Object)

    Override of the Equals method

    Declaration
    public override bool Equals(object thatd)
    Parameters
    Type Name Description
    Object thatd

    The instance to compare to

    Returns
    Type Description
    Boolean

    True if the two distributions are the same in value, false otherwise

    Overrides
    Object.Equals(Object)

    FromMeanAndMeanLogDeterminant(PositiveDefiniteMatrix, Double, Wishart)

    Constructs a Wishart distribution with the given mean and mean log determinant.

    Declaration
    public static Wishart FromMeanAndMeanLogDeterminant(PositiveDefiniteMatrix mean, double meanLogDet, Wishart result = null)
    Parameters
    Type Name Description
    PositiveDefiniteMatrix mean

    Desired expected value.

    Double meanLogDet

    Desired expected log determinant.

    Wishart result
    Returns
    Type Description
    Wishart

    A new Wishart distribution.

    Remarks

    This function is equivalent to maximum-likelihood estimation of a Wishart distribution from data given by sufficient statistics. This function is significantly slower than the other constructors since it involves nonlinear optimization. The algorithm is a generalized Newton iteration, described in "Estimating a Gamma distribution" by T. Minka, 2002.

    FromShapeAndRate(Double, PositiveDefiniteMatrix)

    Creates a multi-dimensional Wishart with given shape and rate matrix

    Declaration
    [Construction(new string[]{"Shape", "Rate"})]
    public static Wishart FromShapeAndRate(double shape, PositiveDefiniteMatrix rate)
    Parameters
    Type Name Description
    Double shape

    The shape parameter

    PositiveDefiniteMatrix rate

    The rate matrix

    Returns
    Type Description
    Wishart

    A new Wishart distribution

    FromShapeAndRate(Int32, Double, Double)

    Creates a multi-dimensional Wishart with given shape and with a rate matrix which is set to a scaled identity matrix

    Declaration
    public static Wishart FromShapeAndRate(int dimension, double shape, double rate)
    Parameters
    Type Name Description
    Int32 dimension

    The dimension

    Double shape

    The shape parameter

    Double rate

    Used to scale the identity matrix

    Returns
    Type Description
    Wishart

    A new Wishart distribution

    FromShapeAndScale(Double, PositiveDefiniteMatrix)

    Creates a new multi-dimensional Wishart with given shape and scale matrix

    Declaration
    public static Wishart FromShapeAndScale(double shape, PositiveDefiniteMatrix scale)
    Parameters
    Type Name Description
    Double shape

    The shape parameter

    PositiveDefiniteMatrix scale

    The scale matrix

    Returns
    Type Description
    Wishart

    A new Wishart distribution

    FromShapeAndScale(Int32, Double, Double)

    Creates a multi-dimensional Wishart with given shape and with a scale matrix which is set to a scaled identity matrix

    Declaration
    public static Wishart FromShapeAndScale(int dimension, double shape, double scale)
    Parameters
    Type Name Description
    Int32 dimension

    The dimension

    Double shape

    The shape parameter

    Double scale

    Used to scale the identity matrix

    Returns
    Type Description
    Wishart

    A new Wishart distribution

    GetAverageLog(Wishart)

    The expected logarithm of that distribution under this distribution.

    Declaration
    public double GetAverageLog(Wishart that)
    Parameters
    Type Name Description
    Wishart that

    The distribution to take the logarithm of.

    Returns
    Type Description
    Double

    sum_x this.Evaluate(x)*Math.Log(that.Evaluate(x))

    Remarks

    This is also known as the cross entropy.

    GetHashCode()

    Override of GetHashCode method

    Declaration
    public override int GetHashCode()
    Returns
    Type Description
    Int32

    The hash code for this instance

    Overrides
    Object.GetHashCode()

    GetLogAverageOf(Wishart)

    Gets the log-integral of the product of this Wishart with another Wishart

    Declaration
    public double GetLogAverageOf(Wishart that)
    Parameters
    Type Name Description
    Wishart that

    The other Wishart

    Returns
    Type Description
    Double

    The log inner product

    GetLogAverageOfPower(Wishart, Double)

    Get the integral of this distribution times another distribution raised to a power.

    Declaration
    public double GetLogAverageOfPower(Wishart that, double power)
    Parameters
    Type Name Description
    Wishart that
    Double power
    Returns
    Type Description
    Double

    GetLogNormalizer()

    Gets the normalizer for the density function of this Wishart distribution

    Declaration
    public double GetLogNormalizer()
    Returns
    Type Description
    Double

    GetLogNormalizer(Double, PositiveDefiniteMatrix)

    Gets the normalizer for a Wishart density function specified by shape and rate matrix

    Declaration
    public static double GetLogNormalizer(double shape, PositiveDefiniteMatrix rate)
    Parameters
    Type Name Description
    Double shape

    Shape parameter

    PositiveDefiniteMatrix rate

    rate matrix

    Returns
    Type Description
    Double

    GetLogProb(PositiveDefiniteMatrix)

    Evaluates the logarithm of this Wishart density function at a given point

    Declaration
    public double GetLogProb(PositiveDefiniteMatrix X)
    Parameters
    Type Name Description
    PositiveDefiniteMatrix X

    Where to evaluate the density

    Returns
    Type Description
    Double

    The log density

    GetLogProb(PositiveDefiniteMatrix, Double, PositiveDefiniteMatrix)

    Evaluates the logarithm of a Wishart density function at a given point

    Declaration
    public static double GetLogProb(PositiveDefiniteMatrix x, double shape, PositiveDefiniteMatrix rate)
    Parameters
    Type Name Description
    PositiveDefiniteMatrix x

    Where to evaluate the density

    Double shape

    Shape parameter

    PositiveDefiniteMatrix rate

    Rate matrix

    Returns
    Type Description
    Double

    The log density

    Remarks

    The distribution is p(X) = |X|^(a-(d+1)/2)exp(-tr(XB))*|B|^a/Gamma_d(a). When a <= (d-1)/2 the Gamma_d(a) term is dropped. When B <= 0 the |B|^a term is dropped. Thus if shape = (d+1)/2 and rate = 0 the density is 1.

    GetMean()

    Gets the mean of the distribution.

    Declaration
    public PositiveDefiniteMatrix GetMean()
    Returns
    Type Description
    PositiveDefiniteMatrix

    A new PositiveDefiniteMatrix.

    GetMean(PositiveDefiniteMatrix)

    Gets the mean of the distribution.

    Declaration
    public PositiveDefiniteMatrix GetMean(PositiveDefiniteMatrix mean)
    Parameters
    Type Name Description
    PositiveDefiniteMatrix mean

    Where to put the mean matrix

    Returns
    Type Description
    PositiveDefiniteMatrix

    The mean matrix

    GetMeanAndVariance(PositiveDefiniteMatrix, PositiveDefiniteMatrix)

    Gets the mean and variance matrices.

    Declaration
    public void GetMeanAndVariance(PositiveDefiniteMatrix mean, PositiveDefiniteMatrix variance)
    Parameters
    Type Name Description
    PositiveDefiniteMatrix mean

    Where to put the mean - assumed to be of the correct size

    PositiveDefiniteMatrix variance

    Where to put the variance - assumed to be of the correct size

    GetMeanLogDeterminant()

    Gets the mean log determinant

    Declaration
    public double GetMeanLogDeterminant()
    Returns
    Type Description
    Double

    The mean log determinant

    GetMode()

    Declaration
    public PositiveDefiniteMatrix GetMode()
    Returns
    Type Description
    PositiveDefiniteMatrix

    GetMode(PositiveDefiniteMatrix)

    Declaration
    public PositiveDefiniteMatrix GetMode(PositiveDefiniteMatrix result)
    Parameters
    Type Name Description
    PositiveDefiniteMatrix result
    Returns
    Type Description
    PositiveDefiniteMatrix

    GetScale()

    Gets the scale matrix

    Declaration
    public PositiveDefiniteMatrix GetScale()
    Returns
    Type Description
    PositiveDefiniteMatrix

    A new PositiveDefiniteMatrix.

    GetVariance()

    Gets the variance of the distribution

    Declaration
    public PositiveDefiniteMatrix GetVariance()
    Returns
    Type Description
    PositiveDefiniteMatrix

    The variance matrix

    GetVariance(PositiveDefiniteMatrix)

    Gets the variance of the distribution

    Declaration
    public PositiveDefiniteMatrix GetVariance(PositiveDefiniteMatrix variance)
    Parameters
    Type Name Description
    PositiveDefiniteMatrix variance

    Where to put the variance

    Returns
    Type Description
    PositiveDefiniteMatrix

    The variance matrix

    IsProper()

    Asks whether this instance is proper

    Declaration
    public bool IsProper()
    Returns
    Type Description
    Boolean

    True if proper, false otherwise

    IsProper(Double, PositiveDefiniteMatrix)

    Asks whether a Wishart distribution of the specified shape and rate is proper

    Declaration
    public static bool IsProper(double shape, PositiveDefiniteMatrix rate)
    Parameters
    Type Name Description
    Double shape

    Shape parameter

    PositiveDefiniteMatrix rate

    Rate matrix

    Returns
    Type Description
    Boolean

    True if proper, false otherwise

    IsUniform()

    Asks whether this instance is uniform

    Declaration
    public bool IsUniform()
    Returns
    Type Description
    Boolean

    MaxDiff(Object)

    The maximum difference between the parameters of this Wishart and that Wishart

    Declaration
    public double MaxDiff(object thatd)
    Parameters
    Type Name Description
    Object thatd

    That Wishart

    Returns
    Type Description
    Double

    The maximum difference

    PointMass(PositiveDefiniteMatrix)

    Creates a Wishart point mass at the specified location

    Declaration
    [Construction(new string[]{"Point"}, UseWhen = "IsPointMass")]
    public static Wishart PointMass(PositiveDefiniteMatrix mean)
    Parameters
    Type Name Description
    PositiveDefiniteMatrix mean

    The location of the point-mass

    Returns
    Type Description
    Wishart

    A new point mass Wishart distribution

    PointMass(Double)

    Creates a Wishart point mass at the specified location

    Declaration
    public static Wishart PointMass(double mean)
    Parameters
    Type Name Description
    Double mean

    The location of the point-mass is a vector where every element equals this value

    Returns
    Type Description
    Wishart

    A new point mass Wishart distribution

    Sample()

    Samples this Wishart distribution. Workspaces and sample matrix are allocated behind the scenes

    Declaration
    public PositiveDefiniteMatrix Sample()
    Returns
    Type Description
    PositiveDefiniteMatrix

    The sample

    Sample(PositiveDefiniteMatrix)

    Samples this Wishart distribution. Workspaces are allocated behind the scenes

    Declaration
    public PositiveDefiniteMatrix Sample(PositiveDefiniteMatrix result)
    Parameters
    Type Name Description
    PositiveDefiniteMatrix result

    Where to put the sample

    Returns
    Type Description
    PositiveDefiniteMatrix

    The sample

    Sample(PositiveDefiniteMatrix, LowerTriangularMatrix, LowerTriangularMatrix, Matrix)

    Samples this Wishart distribution

    Declaration
    public PositiveDefiniteMatrix Sample(PositiveDefiniteMatrix result, LowerTriangularMatrix cholB, LowerTriangularMatrix cholX, Matrix cholXt)
    Parameters
    Type Name Description
    PositiveDefiniteMatrix result

    Where to put the sample

    LowerTriangularMatrix cholB

    A workspace matrix of the same dimension as the distribution

    LowerTriangularMatrix cholX

    A workspace matrix of the same dimension as the distribution

    Matrix cholXt

    A workspace matrix of the same dimension as the distribution

    Returns
    Type Description
    PositiveDefiniteMatrix

    The sample

    Sample(Double, PositiveDefiniteMatrix, PositiveDefiniteMatrix)

    Samples a Wishart distribution of specified shape and rate. Workspaces are allocated behind the scenes

    Declaration
    public static PositiveDefiniteMatrix Sample(double shape, PositiveDefiniteMatrix scale, PositiveDefiniteMatrix result)
    Parameters
    Type Name Description
    Double shape

    The shape parameter

    PositiveDefiniteMatrix scale

    The scale matrix

    PositiveDefiniteMatrix result

    Where to put the sample

    Returns
    Type Description
    PositiveDefiniteMatrix

    The sample

    SampleFromShapeAndRate(Double, PositiveDefiniteMatrix)

    Samples a Wishart distribution of specified shape and rate. Workspaces are allocated behind the scenes

    Declaration
    [ParameterNames(new string[]{"sample", "shape", "rate"})]
    public static PositiveDefiniteMatrix SampleFromShapeAndRate(double shape, PositiveDefiniteMatrix rate)
    Parameters
    Type Name Description
    Double shape

    The shape parameter

    PositiveDefiniteMatrix rate

    The rate matrix

    Returns
    Type Description
    PositiveDefiniteMatrix

    The sample

    SampleFromShapeAndRate(Double, PositiveDefiniteMatrix, PositiveDefiniteMatrix)

    Samples a Wishart distribution of specified shape and rate. Workspaces are allocated behind the scenes

    Declaration
    public static PositiveDefiniteMatrix SampleFromShapeAndRate(double shape, PositiveDefiniteMatrix rate, PositiveDefiniteMatrix result)
    Parameters
    Type Name Description
    Double shape

    The shape parameter

    PositiveDefiniteMatrix rate

    The rate matrix

    PositiveDefiniteMatrix result

    Receives the sample

    Returns
    Type Description
    PositiveDefiniteMatrix

    result

    SampleFromShapeAndScale(Double, PositiveDefiniteMatrix)

    Samples a Wishart distribution of specified shape and scale. Workspaces are allocated behind the scenes

    Declaration
    [ParameterNames(new string[]{"sample", "shape", "scale"})]
    public static PositiveDefiniteMatrix SampleFromShapeAndScale(double shape, PositiveDefiniteMatrix scale)
    Parameters
    Type Name Description
    Double shape

    The shape parameter

    PositiveDefiniteMatrix scale

    The scale matrix

    Returns
    Type Description
    PositiveDefiniteMatrix

    The sample

    SetDerivatives(LowerTriangularMatrix, PositiveDefiniteMatrix, PositiveDefiniteMatrix, Double, Boolean, Double)

    Modify the parameters so that the pdf has the given derivatives at a point.

    Declaration
    public void SetDerivatives(LowerTriangularMatrix xChol, PositiveDefiniteMatrix invX, PositiveDefiniteMatrix dlogp, double xxddlogp, bool forceProper, double shapeOffset = 0)
    Parameters
    Type Name Description
    LowerTriangularMatrix xChol

    Cholesky factor of the point X

    PositiveDefiniteMatrix invX

    Inverse of X. Can be the same object as this.Rate

    PositiveDefiniteMatrix dlogp

    Desired derivative. Can be the same object as this.Rate

    Double xxddlogp

    tr(x tr(x dlogp')/dx)

    Boolean forceProper

    If true and both derivatives cannot be matched, match only the first.

    Double shapeOffset

    SetMeanAndVariance(PositiveDefiniteMatrix, PositiveDefiniteMatrix)

    Sets the parameters to produce a given mean and variance.

    Declaration
    public void SetMeanAndVariance(PositiveDefiniteMatrix mean, PositiveDefiniteMatrix variance)
    Parameters
    Type Name Description
    PositiveDefiniteMatrix mean

    Mean

    PositiveDefiniteMatrix variance

    Variance

    Remarks

    The mean is always matched, but the variance may not match exactly, since the distribution has only one scalar parameter for variance.

    SetShapeAndRate(Double, PositiveDefiniteMatrix)

    Sets the shape parameter and the rate matrix parameter for this instance

    Declaration
    public void SetShapeAndRate(double shape, PositiveDefiniteMatrix rate)
    Parameters
    Type Name Description
    Double shape

    The shape parameter

    PositiveDefiniteMatrix rate

    The rate matrix

    SetShapeAndScale(Double, PositiveDefiniteMatrix)

    Sets the shape parameter and the scale matrix parameter for this instance

    Declaration
    public void SetShapeAndScale(double shape, PositiveDefiniteMatrix scale)
    Parameters
    Type Name Description
    Double shape

    The shape parameter

    PositiveDefiniteMatrix scale

    The scale matrix

    SetTo(Wishart)

    Sets this Wishart instance to have the parameter values of another Wishart instance

    Declaration
    public void SetTo(Wishart that)
    Parameters
    Type Name Description
    Wishart that

    The other Wishart

    SetToPointMass()

    Sets this instance to a point mass. The location of the point mass is the existing rate matrix

    Declaration
    protected void SetToPointMass()

    SetToPower(Wishart, Double)

    Sets the parameters to represent the power of a source Wishart to some exponent.

    Declaration
    public void SetToPower(Wishart dist, double exponent)
    Parameters
    Type Name Description
    Wishart dist

    The source Wishart

    Double exponent

    The exponent

    SetToProduct(Wishart, Wishart)

    Sets the parameters to represent the product of two Wisharts.

    Declaration
    public void SetToProduct(Wishart g1, Wishart g2)
    Parameters
    Type Name Description
    Wishart g1

    The first Wishart. May refer to this.

    Wishart g2

    The second Wishart. May refer to this.

    Remarks

    The result may not be proper. No error is thrown in this case.

    SetToRatio(Wishart, Wishart, Boolean)

    Sets the parameters to represent the ratio of two Wisharts.

    Declaration
    public void SetToRatio(Wishart numerator, Wishart denominator, bool forceProper = false)
    Parameters
    Type Name Description
    Wishart numerator

    The numerator Wishart. Can be this

    Wishart denominator

    The denominator Wishart

    Boolean forceProper

    If true, the result shape >= (dimension+1)/2 and rate is non-negative definite

    SetToSum(Double, Wishart, Double, Wishart)

    Weighted mixture distribution for two Wisharts

    Declaration
    public void SetToSum(double weight1, Wishart dist1, double weight2, Wishart dist2)
    Parameters
    Type Name Description
    Double weight1

    First weight

    Wishart dist1

    First Wishart

    Double weight2

    Second weight

    Wishart dist2

    Second Wishart

    SetToUniform()

    Sets this instance to have uniform distribution

    Declaration
    public void SetToUniform()

    ToString()

    ToString override

    Declaration
    public override string ToString()
    Returns
    Type Description
    String

    String representation of the instance

    Overrides
    Object.ToString()

    Uniform(Int32)

    Constructs a uniform Wishart distribution of the given dimension

    Declaration
    [Construction(new string[]{"Dimension"}, UseWhen = "IsUniform")]
    public static Wishart Uniform(int dimension)
    Parameters
    Type Name Description
    Int32 dimension

    The dimension

    Returns
    Type Description
    Wishart

    WeightedSum<T>(T, Int32, Double, T, Double, T)

    Creates a weighted mixture distribution for distributions whose mean and variance are both of type PositiveDefiniteMatrix. The distribution type must implement CanGetMeanAndVariance<MeanType, VarType> and CanSetMeanAndVariance<MeanType, VarType>

    Declaration
    public static T WeightedSum<T>(T result, int dimension, double weight1, T dist1, double weight2, T dist2)
        where T : CanGetMeanAndVariance<PositiveDefiniteMatrix, PositiveDefiniteMatrix>, CanSetMeanAndVariance<PositiveDefiniteMatrix, PositiveDefiniteMatrix>, SettableToUniform, SettableTo<T>
    Parameters
    Type Name Description
    T result

    Resulting distribution

    Int32 dimension

    The dimension of the domain

    Double weight1

    The first weight

    T dist1

    The first distribution

    Double weight2

    The second weight

    T dist2

    The second distribution

    Returns
    Type Description
    T
    Type Parameters
    Name Description
    T

    Distribution type for the mixture

    Operators

    Division(Wishart, Wishart)

    Creates a new Wishart which is the ratio of two other Wishart

    Declaration
    public static Wishart operator /(Wishart numerator, Wishart denominator)
    Parameters
    Type Name Description
    Wishart numerator

    numerator Wishart

    Wishart denominator

    denominator Wishart

    Returns
    Type Description
    Wishart

    Result

    ExclusiveOr(Wishart, Double)

    Raises a distribution to a power.

    Declaration
    public static Wishart operator ^(Wishart dist, double exponent)
    Parameters
    Type Name Description
    Wishart dist

    The distribution.

    Double exponent

    The power to raise to.

    Returns
    Type Description
    Wishart

    dist raised to power exponent.

    Multiply(Wishart, Wishart)

    Creates a new Wishart which the product of two other Wisharts

    Declaration
    public static Wishart operator *(Wishart a, Wishart b)
    Parameters
    Type Name Description
    Wishart a

    First Wishart

    Wishart b

    Second Wishart

    Returns
    Type Description
    Wishart

    Result

    Implements

    IDistribution<T>
    IDistribution
    System.ICloneable
    HasPoint<T>
    CanGetLogProb<T>
    SettableTo<T>
    SettableToProduct<T>
    SettableToProduct<T, U>
    Diffable
    SettableToUniform
    Sampleable<T>
    SettableToRatio<T>
    SettableToRatio<T, U>
    SettableToPower<T>
    CanGetMean<MeanType>
    CanGetVariance<VarType>
    CanGetMeanAndVariance<MeanType, VarType>
    CanSetMeanAndVariance<MeanType, VarType>
    CanGetLogAverageOf<T>
    CanGetLogAverageOfPower<T>
    SettableToWeightedSum<T>
    CanGetAverageLog<T>
    CanGetLogNormalizer
    CanGetMode<ModeType>
    In This Article
    Back to top Copyright © .NET Foundation. All rights reserved.