Search Results for

    Show / Hide Table of Contents

    Class MatrixMeanVarianceAccumulator

    Class for accumulating weighted noisy matrix observations, and computing sample count, mean matrix, and covariance matrix

    Inheritance
    Object
    MatrixMeanVarianceAccumulator
    Implements
    SettableTo<MatrixMeanVarianceAccumulator>
    ICloneable
    Inherited Members
    Object.Equals(Object)
    Object.Equals(Object, Object)
    Object.GetHashCode()
    Object.GetType()
    Object.MemberwiseClone()
    Object.ReferenceEquals(Object, Object)
    Object.ToString()
    Namespace: Microsoft.ML.Probabilistic.Math
    Assembly: Microsoft.ML.Probabilistic.dll
    Syntax
    public class MatrixMeanVarianceAccumulator : SettableTo<MatrixMeanVarianceAccumulator>, ICloneable

    Constructors

    MatrixMeanVarianceAccumulator(Int32, Int32)

    Constructs an accumulator for matrix observations

    Declaration
    public MatrixMeanVarianceAccumulator(int rows, int cols)
    Parameters
    Type Name Description
    Int32 rows
    Int32 cols

    Fields

    Count

    Count

    Declaration
    public double Count
    Field Value
    Type Description
    Double

    Mean

    Mean matrix

    Declaration
    public Matrix Mean
    Field Value
    Type Description
    Matrix

    Variance

    Covariance matrix

    Declaration
    public PositiveDefiniteMatrix Variance
    Field Value
    Type Description
    PositiveDefiniteMatrix

    Properties

    Cols

    The number of columns in the matrix

    Declaration
    public int Cols { get; }
    Property Value
    Type Description
    Int32

    Rows

    The number of rows in the matrix

    Declaration
    public int Rows { get; }
    Property Value
    Type Description
    Int32

    Methods

    Add(Matrix)

    Adds an observation

    Declaration
    public void Add(Matrix x)
    Parameters
    Type Name Description
    Matrix x

    Add(Matrix, PositiveDefiniteMatrix, Double)

    Adds a noisy observation.

    Declaration
    public void Add(Matrix x, PositiveDefiniteMatrix noiseVariance, double weight)
    Parameters
    Type Name Description
    Matrix x
    PositiveDefiniteMatrix noiseVariance
    Double weight
    Remarks

    The contents of noiseVariance are modified.

    Add(Matrix, Double)

    Adds a weighted observation

    Declaration
    public void Add(Matrix x, double weight)
    Parameters
    Type Name Description
    Matrix x
    Double weight

    Clear()

    Clears the accumulator

    Declaration
    public void Clear()

    Clone()

    Returns a clone of this estimator.

    Declaration
    public object Clone()
    Returns
    Type Description
    Object

    SetTo(MatrixMeanVarianceAccumulator)

    Sets the state of this estimator from the specified estimator.

    Declaration
    public void SetTo(MatrixMeanVarianceAccumulator value)
    Parameters
    Type Name Description
    MatrixMeanVarianceAccumulator value

    Implements

    SettableTo<T>
    System.ICloneable
    In This Article
    Back to top Copyright © .NET Foundation. All rights reserved.