Search Results for

    Show / Hide Table of Contents

    Class BayesPointMachineClassifierPredictionSettings<TLabel>

    Abstract prediction settings of a Bayes point machine classifier.

    Inheritance
    Object
    BayesPointMachineClassifierPredictionSettings<TLabel>
    BinaryBayesPointMachineClassifierPredictionSettings<TLabel>
    MulticlassBayesPointMachineClassifierPredictionSettings<TLabel>
    Implements
    IBayesPointMachineClassifierPredictionSettings<TLabel>
    ICustomSerializable
    Inherited Members
    Object.Equals(Object)
    Object.Equals(Object, Object)
    Object.GetHashCode()
    Object.GetType()
    Object.MemberwiseClone()
    Object.ReferenceEquals(Object, Object)
    Object.ToString()
    Namespace: Microsoft.ML.Probabilistic.Learners
    Assembly: Microsoft.ML.Probabilistic.Learners.Classifier.dll
    Syntax
    [Serializable]
    public abstract class BayesPointMachineClassifierPredictionSettings<TLabel> : IBayesPointMachineClassifierPredictionSettings<TLabel>, ICustomSerializable
    Type Parameters
    Name Description
    TLabel

    The type of a label.

    Remarks

    These settings can be modified after training.

    Constructors

    BayesPointMachineClassifierPredictionSettings()

    Initializes a new instance of the BayesPointMachineClassifierPredictionSettings<TLabel> class.

    Declaration
    protected BayesPointMachineClassifierPredictionSettings()

    BayesPointMachineClassifierPredictionSettings(IReader)

    Initializes a new instance of the BayesPointMachineClassifierPredictionSettings<TLabel> class from a reader of a binary stream.

    Declaration
    protected BayesPointMachineClassifierPredictionSettings(IReader reader)
    Parameters
    Type Name Description
    IReader reader

    The binary reader to read the prediction settings from.

    Fields

    LossFunctionDefault

    The default loss function.

    Declaration
    public const LossFunction LossFunctionDefault = LossFunction.ZeroOne
    Field Value
    Type Description
    LossFunction

    Methods

    GetPredictionLossFunction(out Func<TLabel, TLabel, Double>)

    Gets the loss function which determines how a prediction in the form of a distribution is converted into a point prediction.

    Declaration
    public LossFunction GetPredictionLossFunction(out Func<TLabel, TLabel, double> customLossFunction)
    Parameters
    Type Name Description
    Func<TLabel, TLabel, Double> customLossFunction

    The custom loss function. This is null unless the returned LossFunction is 'Custom'.

    Returns
    Type Description
    LossFunction

    The LossFunction.

    Remarks

    A loss function returns the loss incurred when choosing an estimate instead of the true value, where the first argument is the true value and the second argument is the estimate of the true value.

    SaveForwardCompatible(IWriter)

    Saves the prediction settings of the Bayes point machine classifier using the specified writer to a binary stream.

    Declaration
    public virtual void SaveForwardCompatible(IWriter writer)
    Parameters
    Type Name Description
    IWriter writer

    The writer to save the prediction settings to.

    SetPredictionLossFunction(LossFunction, Func<TLabel, TLabel, Double>)

    Sets the loss function which determines how a prediction in the form of a distribution is converted into a point prediction.

    Declaration
    public void SetPredictionLossFunction(LossFunction lossFunction, Func<TLabel, TLabel, double> customLossFunction = null)
    Parameters
    Type Name Description
    LossFunction lossFunction

    The loss function.

    Func<TLabel, TLabel, Double> customLossFunction

    An optional custom loss function. This can only be set when lossFunction is set to 'Custom'. The custom loss function returns the loss incurred when choosing an estimate instead of the true value, where the first argument is the true value and the second argument is the estimate of the true value.

    Implements

    IBayesPointMachineClassifierPredictionSettings<TLabel>
    ICustomSerializable
    In This Article
    Back to top Copyright © .NET Foundation. All rights reserved.