Search Results for

    Show / Hide Table of Contents

    Interface IBayesPointMachineClassifierPredictionSettings<TLabel>

    Interface to prediction settings of a Bayes point machine classifier.

    Inherited Members
    ICustomSerializable.SaveForwardCompatible(IWriter)
    Namespace: Microsoft.ML.Probabilistic.Learners
    Assembly: Microsoft.ML.Probabilistic.Learners.Classifier.dll
    Syntax
    public interface IBayesPointMachineClassifierPredictionSettings<TLabel> : ICustomSerializable
    Type Parameters
    Name Description
    TLabel

    The type of a label.

    Remarks

    These settings can be modified after training.

    Methods

    GetPredictionLossFunction(out Func<TLabel, TLabel, Double>)

    Gets the loss function which determines how a prediction in the form of a distribution is converted into a point prediction.

    Declaration
    LossFunction GetPredictionLossFunction(out Func<TLabel, TLabel, double> customLossFunction)
    Parameters
    Type Name Description
    Func<TLabel, TLabel, Double> customLossFunction

    The custom loss function. This is null unless the returned LossFunction is 'Custom'.

    Returns
    Type Description
    LossFunction

    The LossFunction.

    Remarks

    A loss function returns the loss incurred when choosing an estimate instead of the true value, where the first argument is the true value and the second argument is the estimate of the true value.

    SetPredictionLossFunction(LossFunction, Func<TLabel, TLabel, Double>)

    Sets the loss function which determines how a prediction in the form of a distribution is converted into a point prediction.

    Declaration
    void SetPredictionLossFunction(LossFunction lossFunction, Func<TLabel, TLabel, double> customLossFunction = null)
    Parameters
    Type Name Description
    LossFunction lossFunction

    The loss function.

    Func<TLabel, TLabel, Double> customLossFunction

    An optional custom loss function. This can only be set when lossFunction is set to 'Custom'. The custom loss function returns the loss incurred when choosing an estimate instead of the true value, where the first argument is the true value and the second argument is the estimate of the true value.

    In This Article
    Back to top Copyright © .NET Foundation. All rights reserved.