Search Results for

    Show / Hide Table of Contents

    Class GaussianProductOpEvidenceBase

    Inheritance
    Object
    GaussianProductOpBase
    GaussianProductOpEvidenceBase
    GaussianProductOp
    GaussianProductOp_EM
    GaussianProductOp_Laplace
    GaussianProductOp_Laplace2
    GaussianProductOp_LaplaceProp
    GaussianProductOp_PointB
    GaussianProductOp_Slow
    Inherited Members
    GaussianProductOpBase.ProductAverageConditional(Double, Gaussian)
    GaussianProductOpBase.ProductAverageConditional(Gaussian, Double)
    GaussianProductOpBase.ProductAverageConditional(Double, Double)
    GaussianProductOpBase.AAverageConditional(Gaussian, Double)
    GaussianProductOpBase.AAverageConditional(Double, Double)
    GaussianProductOpBase.BAverageConditional(Gaussian, Double)
    GaussianProductOpBase.BAverageConditional(Double, Double)
    GaussianProductOpBase.ProductAverageConditional(Double, TruncatedGaussian)
    GaussianProductOpBase.ProductAverageConditional(TruncatedGaussian, Double)
    GaussianProductOpBase.AAverageConditional(TruncatedGaussian, Double)
    GaussianProductOpBase.BAverageConditional(TruncatedGaussian, Double)
    Object.Equals(Object)
    Object.Equals(Object, Object)
    Object.GetHashCode()
    Object.GetType()
    Object.MemberwiseClone()
    Object.ReferenceEquals(Object, Object)
    Object.ToString()
    Namespace: Microsoft.ML.Probabilistic.Factors
    Assembly: Microsoft.ML.Probabilistic.dll
    Syntax
    public class GaussianProductOpEvidenceBase : GaussianProductOpBase

    Methods

    LogAverageFactor(Gaussian, Gaussian, Double, Gaussian)

    Evidence message for EP.

    Declaration
    [FactorMethod(typeof(Factor), "Product", new Type[]{typeof(double), typeof(double)})]
    public static double LogAverageFactor(Gaussian product, Gaussian a, double b, Gaussian to_product)
    Parameters
    Type Name Description
    Gaussian product

    Incoming message from product.

    Gaussian a

    Incoming message from a.

    Double b

    Constant value for b.

    Gaussian to_product

    Outgoing message to product.

    Returns
    Type Description
    Double

    Logarithm of the factor's average value across the given argument distributions.

    Remarks

    The formula for the result is log(sum_(product,a) p(product,a) factor(product,a,b)).

    LogAverageFactor(Gaussian, Double, Gaussian, Gaussian)

    Evidence message for EP.

    Declaration
    [FactorMethod(typeof(Factor), "Product", new Type[]{typeof(double), typeof(double)})]
    public static double LogAverageFactor(Gaussian product, double a, Gaussian b, Gaussian to_product)
    Parameters
    Type Name Description
    Gaussian product

    Incoming message from product.

    Double a

    Constant value for a.

    Gaussian b

    Incoming message from b.

    Gaussian to_product

    Outgoing message to product.

    Returns
    Type Description
    Double

    Logarithm of the factor's average value across the given argument distributions.

    Remarks

    The formula for the result is log(sum_(product,b) p(product,b) factor(product,a,b)).

    LogAverageFactor(Gaussian, Double, Double)

    Evidence message for EP.

    Declaration
    [FactorMethod(typeof(Factor), "Product", new Type[]{typeof(double), typeof(double)})]
    public static double LogAverageFactor(Gaussian product, double a, double b)
    Parameters
    Type Name Description
    Gaussian product

    Incoming message from product.

    Double a

    Constant value for a.

    Double b

    Constant value for b.

    Returns
    Type Description
    Double

    Logarithm of the factor's average value across the given argument distributions.

    Remarks

    The formula for the result is log(sum_(product) p(product) factor(product,a,b)).

    LogAverageFactor(Double, Gaussian, Double)

    Evidence message for EP.

    Declaration
    [FactorMethod(typeof(Factor), "Product", new Type[]{typeof(double), typeof(double)})]
    public static double LogAverageFactor(double product, Gaussian a, double b)
    Parameters
    Type Name Description
    Double product

    Constant value for product.

    Gaussian a

    Incoming message from a.

    Double b

    Constant value for b.

    Returns
    Type Description
    Double

    Logarithm of the factor's average value across the given argument distributions.

    Remarks

    The formula for the result is log(sum_(a) p(a) factor(product,a,b)).

    LogAverageFactor(Double, Double, Gaussian)

    Evidence message for EP.

    Declaration
    [FactorMethod(typeof(Factor), "Product", new Type[]{typeof(double), typeof(double)})]
    public static double LogAverageFactor(double product, double a, Gaussian b)
    Parameters
    Type Name Description
    Double product

    Constant value for product.

    Double a

    Constant value for a.

    Gaussian b

    Incoming message from b.

    Returns
    Type Description
    Double

    Logarithm of the factor's average value across the given argument distributions.

    Remarks

    The formula for the result is log(sum_(b) p(b) factor(product,a,b)).

    LogAverageFactor(Double, Double, Double)

    Evidence message for EP.

    Declaration
    [FactorMethod(typeof(Factor), "Product", new Type[]{typeof(double), typeof(double)})]
    public static double LogAverageFactor(double product, double a, double b)
    Parameters
    Type Name Description
    Double product

    Constant value for product.

    Double a

    Constant value for a.

    Double b

    Constant value for b.

    Returns
    Type Description
    Double

    Logarithm of the factor's average value across the given argument distributions.

    Remarks

    The formula for the result is log(factor(product,a,b)).

    LogEvidenceRatio(Gaussian, Gaussian, Double)

    Evidence message for EP.

    Declaration
    [FactorMethod(typeof(Factor), "Product", new Type[]{typeof(double), typeof(double)})]
    public static double LogEvidenceRatio(Gaussian product, Gaussian a, double b)
    Parameters
    Type Name Description
    Gaussian product

    Incoming message from product.

    Gaussian a

    Incoming message from a.

    Double b

    Constant value for b.

    Returns
    Type Description
    Double

    Logarithm of the factor's contribution the EP model evidence.

    Remarks

    The formula for the result is log(sum_(product,a) p(product,a) factor(product,a,b) / sum_product p(product) messageTo(product)). Adding up these values across all factors and variables gives the log-evidence estimate for EP.

    LogEvidenceRatio(Gaussian, Double, Gaussian)

    Evidence message for EP.

    Declaration
    [FactorMethod(typeof(Factor), "Product", new Type[]{typeof(double), typeof(double)})]
    public static double LogEvidenceRatio(Gaussian product, double a, Gaussian b)
    Parameters
    Type Name Description
    Gaussian product

    Incoming message from product.

    Double a

    Constant value for a.

    Gaussian b

    Incoming message from b.

    Returns
    Type Description
    Double

    Logarithm of the factor's contribution the EP model evidence.

    Remarks

    The formula for the result is log(sum_(product,b) p(product,b) factor(product,a,b) / sum_product p(product) messageTo(product)). Adding up these values across all factors and variables gives the log-evidence estimate for EP.

    LogEvidenceRatio(Gaussian, Double, Double)

    Evidence message for EP.

    Declaration
    [FactorMethod(typeof(Factor), "Product", new Type[]{typeof(double), typeof(double)})]
    public static double LogEvidenceRatio(Gaussian product, double a, double b)
    Parameters
    Type Name Description
    Gaussian product

    Incoming message from product.

    Double a

    Constant value for a.

    Double b

    Constant value for b.

    Returns
    Type Description
    Double

    Logarithm of the factor's contribution the EP model evidence.

    Remarks

    The formula for the result is log(sum_(product) p(product) factor(product,a,b) / sum_product p(product) messageTo(product)). Adding up these values across all factors and variables gives the log-evidence estimate for EP.

    LogEvidenceRatio(Double, Gaussian, Double)

    Evidence message for EP.

    Declaration
    [FactorMethod(typeof(Factor), "Product", new Type[]{typeof(double), typeof(double)})]
    public static double LogEvidenceRatio(double product, Gaussian a, double b)
    Parameters
    Type Name Description
    Double product

    Constant value for product.

    Gaussian a

    Incoming message from a.

    Double b

    Constant value for b.

    Returns
    Type Description
    Double

    Logarithm of the factor's contribution the EP model evidence.

    Remarks

    The formula for the result is log(sum_(a) p(a) factor(product,a,b)). Adding up these values across all factors and variables gives the log-evidence estimate for EP.

    LogEvidenceRatio(Double, Double, Gaussian)

    Evidence message for EP.

    Declaration
    [FactorMethod(typeof(Factor), "Product", new Type[]{typeof(double), typeof(double)})]
    public static double LogEvidenceRatio(double product, double a, Gaussian b)
    Parameters
    Type Name Description
    Double product

    Constant value for product.

    Double a

    Constant value for a.

    Gaussian b

    Incoming message from b.

    Returns
    Type Description
    Double

    Logarithm of the factor's contribution the EP model evidence.

    Remarks

    The formula for the result is log(sum_(b) p(b) factor(product,a,b)). Adding up these values across all factors and variables gives the log-evidence estimate for EP.

    LogEvidenceRatio(Double, Double, Double)

    Evidence message for EP.

    Declaration
    [FactorMethod(typeof(Factor), "Product", new Type[]{typeof(double), typeof(double)})]
    public static double LogEvidenceRatio(double product, double a, double b)
    Parameters
    Type Name Description
    Double product

    Constant value for product.

    Double a

    Constant value for a.

    Double b

    Constant value for b.

    Returns
    Type Description
    Double

    Logarithm of the factor's contribution the EP model evidence.

    Remarks

    The formula for the result is log(factor(product,a,b)). Adding up these values across all factors and variables gives the log-evidence estimate for EP.

    In This Article
    Back to top Copyright © .NET Foundation. All rights reserved.