Class GaussianProductOpEvidenceBase
Inheritance
Inherited Members
Namespace: Microsoft.ML.Probabilistic.Factors
Assembly: Microsoft.ML.Probabilistic.dll
Syntax
public class GaussianProductOpEvidenceBase : GaussianProductOpBase
Methods
LogAverageFactor(Gaussian, Gaussian, Double, Gaussian)
Evidence message for EP.
Declaration
[FactorMethod(typeof(Factor), "Product", new Type[]{typeof(double), typeof(double)})]
public static double LogAverageFactor(Gaussian product, Gaussian a, double b, Gaussian to_product)
Parameters
Type | Name | Description |
---|---|---|
Gaussian | product | Incoming message from |
Gaussian | a | Incoming message from |
Double | b | Constant value for |
Gaussian | to_product | Outgoing message to |
Returns
Type | Description |
---|---|
Double | Logarithm of the factor's average value across the given argument distributions. |
Remarks
The formula for the result is log(sum_(product,a) p(product,a) factor(product,a,b))
.
LogAverageFactor(Gaussian, Double, Gaussian, Gaussian)
Evidence message for EP.
Declaration
[FactorMethod(typeof(Factor), "Product", new Type[]{typeof(double), typeof(double)})]
public static double LogAverageFactor(Gaussian product, double a, Gaussian b, Gaussian to_product)
Parameters
Type | Name | Description |
---|---|---|
Gaussian | product | Incoming message from |
Double | a | Constant value for |
Gaussian | b | Incoming message from |
Gaussian | to_product | Outgoing message to |
Returns
Type | Description |
---|---|
Double | Logarithm of the factor's average value across the given argument distributions. |
Remarks
The formula for the result is log(sum_(product,b) p(product,b) factor(product,a,b))
.
LogAverageFactor(Gaussian, Double, Double)
Evidence message for EP.
Declaration
[FactorMethod(typeof(Factor), "Product", new Type[]{typeof(double), typeof(double)})]
public static double LogAverageFactor(Gaussian product, double a, double b)
Parameters
Type | Name | Description |
---|---|---|
Gaussian | product | Incoming message from |
Double | a | Constant value for |
Double | b | Constant value for |
Returns
Type | Description |
---|---|
Double | Logarithm of the factor's average value across the given argument distributions. |
Remarks
The formula for the result is log(sum_(product) p(product) factor(product,a,b))
.
LogAverageFactor(Double, Gaussian, Double)
Evidence message for EP.
Declaration
[FactorMethod(typeof(Factor), "Product", new Type[]{typeof(double), typeof(double)})]
public static double LogAverageFactor(double product, Gaussian a, double b)
Parameters
Type | Name | Description |
---|---|---|
Double | product | Constant value for |
Gaussian | a | Incoming message from |
Double | b | Constant value for |
Returns
Type | Description |
---|---|
Double | Logarithm of the factor's average value across the given argument distributions. |
Remarks
The formula for the result is log(sum_(a) p(a) factor(product,a,b))
.
LogAverageFactor(Double, Double, Gaussian)
Evidence message for EP.
Declaration
[FactorMethod(typeof(Factor), "Product", new Type[]{typeof(double), typeof(double)})]
public static double LogAverageFactor(double product, double a, Gaussian b)
Parameters
Type | Name | Description |
---|---|---|
Double | product | Constant value for |
Double | a | Constant value for |
Gaussian | b | Incoming message from |
Returns
Type | Description |
---|---|
Double | Logarithm of the factor's average value across the given argument distributions. |
Remarks
The formula for the result is log(sum_(b) p(b) factor(product,a,b))
.
LogAverageFactor(Double, Double, Double)
Evidence message for EP.
Declaration
[FactorMethod(typeof(Factor), "Product", new Type[]{typeof(double), typeof(double)})]
public static double LogAverageFactor(double product, double a, double b)
Parameters
Type | Name | Description |
---|---|---|
Double | product | Constant value for |
Double | a | Constant value for |
Double | b | Constant value for |
Returns
Type | Description |
---|---|
Double | Logarithm of the factor's average value across the given argument distributions. |
Remarks
The formula for the result is log(factor(product,a,b))
.
LogEvidenceRatio(Gaussian, Gaussian, Double)
Evidence message for EP.
Declaration
[FactorMethod(typeof(Factor), "Product", new Type[]{typeof(double), typeof(double)})]
public static double LogEvidenceRatio(Gaussian product, Gaussian a, double b)
Parameters
Type | Name | Description |
---|---|---|
Gaussian | product | Incoming message from |
Gaussian | a | Incoming message from |
Double | b | Constant value for |
Returns
Type | Description |
---|---|
Double | Logarithm of the factor's contribution the EP model evidence. |
Remarks
The formula for the result is log(sum_(product,a) p(product,a) factor(product,a,b) / sum_product p(product) messageTo(product))
. Adding up these values across all factors and variables gives the log-evidence estimate for EP.
LogEvidenceRatio(Gaussian, Double, Gaussian)
Evidence message for EP.
Declaration
[FactorMethod(typeof(Factor), "Product", new Type[]{typeof(double), typeof(double)})]
public static double LogEvidenceRatio(Gaussian product, double a, Gaussian b)
Parameters
Type | Name | Description |
---|---|---|
Gaussian | product | Incoming message from |
Double | a | Constant value for |
Gaussian | b | Incoming message from |
Returns
Type | Description |
---|---|
Double | Logarithm of the factor's contribution the EP model evidence. |
Remarks
The formula for the result is log(sum_(product,b) p(product,b) factor(product,a,b) / sum_product p(product) messageTo(product))
. Adding up these values across all factors and variables gives the log-evidence estimate for EP.
LogEvidenceRatio(Gaussian, Double, Double)
Evidence message for EP.
Declaration
[FactorMethod(typeof(Factor), "Product", new Type[]{typeof(double), typeof(double)})]
public static double LogEvidenceRatio(Gaussian product, double a, double b)
Parameters
Type | Name | Description |
---|---|---|
Gaussian | product | Incoming message from |
Double | a | Constant value for |
Double | b | Constant value for |
Returns
Type | Description |
---|---|
Double | Logarithm of the factor's contribution the EP model evidence. |
Remarks
The formula for the result is log(sum_(product) p(product) factor(product,a,b) / sum_product p(product) messageTo(product))
. Adding up these values across all factors and variables gives the log-evidence estimate for EP.
LogEvidenceRatio(Double, Gaussian, Double)
Evidence message for EP.
Declaration
[FactorMethod(typeof(Factor), "Product", new Type[]{typeof(double), typeof(double)})]
public static double LogEvidenceRatio(double product, Gaussian a, double b)
Parameters
Type | Name | Description |
---|---|---|
Double | product | Constant value for |
Gaussian | a | Incoming message from |
Double | b | Constant value for |
Returns
Type | Description |
---|---|
Double | Logarithm of the factor's contribution the EP model evidence. |
Remarks
The formula for the result is log(sum_(a) p(a) factor(product,a,b))
. Adding up these values across all factors and variables gives the log-evidence estimate for EP.
LogEvidenceRatio(Double, Double, Gaussian)
Evidence message for EP.
Declaration
[FactorMethod(typeof(Factor), "Product", new Type[]{typeof(double), typeof(double)})]
public static double LogEvidenceRatio(double product, double a, Gaussian b)
Parameters
Type | Name | Description |
---|---|---|
Double | product | Constant value for |
Double | a | Constant value for |
Gaussian | b | Incoming message from |
Returns
Type | Description |
---|---|
Double | Logarithm of the factor's contribution the EP model evidence. |
Remarks
The formula for the result is log(sum_(b) p(b) factor(product,a,b))
. Adding up these values across all factors and variables gives the log-evidence estimate for EP.
LogEvidenceRatio(Double, Double, Double)
Evidence message for EP.
Declaration
[FactorMethod(typeof(Factor), "Product", new Type[]{typeof(double), typeof(double)})]
public static double LogEvidenceRatio(double product, double a, double b)
Parameters
Type | Name | Description |
---|---|---|
Double | product | Constant value for |
Double | a | Constant value for |
Double | b | Constant value for |
Returns
Type | Description |
---|---|
Double | Logarithm of the factor's contribution the EP model evidence. |
Remarks
The formula for the result is log(factor(product,a,b))
. Adding up these values across all factors and variables gives the log-evidence estimate for EP.