Class GaussianProductOp_Laplace2
Provides outgoing messages for Product(Double, Double), given random arguments to the function.
Inherited Members
Namespace: Microsoft.ML.Probabilistic.Factors
Assembly: Microsoft.ML.Probabilistic.dll
Syntax
[FactorMethod(typeof(Factor), "Product", new Type[]{typeof(double), typeof(double)})]
[Quality(QualityBand.Experimental)]
public class GaussianProductOp_Laplace2 : GaussianProductOpEvidenceBaseRemarks
This class allows EP to process the product factor using Laplace's method.
Fields
modified
Declaration
public static bool modifiedField Value
| Type | Description | 
|---|---|
| Boolean | 
offDiagonal
Declaration
public static bool offDiagonalField Value
| Type | Description | 
|---|---|
| Boolean | 
Methods
AAverageConditional(Gaussian, Gaussian, Gaussian, Gaussian)
EP message to a.
Declaration
public static Gaussian AAverageConditional(Gaussian Product, Gaussian A, Gaussian B, Gaussian to_A)Parameters
| Type | Name | Description | 
|---|---|---|
| Gaussian | Product | Incoming message from  | 
| Gaussian | A | Incoming message from  | 
| Gaussian | B | Incoming message from  | 
| Gaussian | to_A | Previous outgoing message to  | 
Returns
| Type | Description | 
|---|---|
| Gaussian | The outgoing EP message to the  | 
Remarks
The outgoing message is a distribution matching the moments of a as the random arguments are varied. The formula is proj[p(a) sum_(product,b) p(product,b) factor(product,a,b)]/p(a).
Exceptions
| Type | Condition | 
|---|---|
| ImproperMessageException | 
 | 
BAverageConditional(Gaussian, Gaussian, Gaussian, Gaussian)
EP message to b.
Declaration
public static Gaussian BAverageConditional(Gaussian Product, Gaussian A, Gaussian B, Gaussian to_B)Parameters
| Type | Name | Description | 
|---|---|---|
| Gaussian | Product | Incoming message from  | 
| Gaussian | A | Incoming message from  | 
| Gaussian | B | Incoming message from  | 
| Gaussian | to_B | Previous outgoing message to  | 
Returns
| Type | Description | 
|---|---|
| Gaussian | The outgoing EP message to the  | 
Remarks
The outgoing message is a distribution matching the moments of b as the random arguments are varied. The formula is proj[p(b) sum_(product,a) p(product,a) factor(product,a,b)]/p(b).
Exceptions
| Type | Condition | 
|---|---|
| ImproperMessageException | 
 | 
LogAverageFactor(Gaussian, Gaussian, Gaussian, Gaussian)
Evidence message for EP.
Declaration
public static double LogAverageFactor(Gaussian Product, Gaussian A, Gaussian B, Gaussian to_A)Parameters
| Type | Name | Description | 
|---|---|---|
| Gaussian | Product | Incoming message from  | 
| Gaussian | A | Incoming message from  | 
| Gaussian | B | Incoming message from  | 
| Gaussian | to_A | Previous outgoing message to  | 
Returns
| Type | Description | 
|---|---|
| Double | Logarithm of the factor's average value across the given argument distributions. | 
Remarks
The formula for the result is log(sum_(product,a,b) p(product,a,b) factor(product,a,b)).
Exceptions
| Type | Condition | 
|---|---|
| ImproperMessageException | 
 | 
| ImproperMessageException | 
 | 
| ImproperMessageException | 
 | 
LogEvidenceRatio(Gaussian, Gaussian, Gaussian)
Evidence message for EP.
Declaration
public static double LogEvidenceRatio(Gaussian Product, Gaussian A, Gaussian B)Parameters
| Type | Name | Description | 
|---|---|---|
| Gaussian | Product | Incoming message from  | 
| Gaussian | A | Incoming message from  | 
| Gaussian | B | Incoming message from  | 
Returns
| Type | Description | 
|---|---|
| Double | Logarithm of the factor's contribution the EP model evidence. | 
Remarks
The formula for the result is log(sum_(product,a,b) p(product,a,b) factor(product,a,b) / sum_product p(product) messageTo(product)). Adding up these values across all factors and variables gives the log-evidence estimate for EP.
Exceptions
| Type | Condition | 
|---|---|
| ImproperMessageException | 
 | 
| ImproperMessageException | 
 | 
| ImproperMessageException | 
 | 
ProductAverageConditional(Gaussian, Gaussian, Gaussian, Gaussian, Gaussian)
EP message to product.
Declaration
public static Gaussian ProductAverageConditional(Gaussian Product, Gaussian A, Gaussian B, Gaussian to_A, Gaussian to_B)Parameters
| Type | Name | Description | 
|---|---|---|
| Gaussian | Product | Incoming message from  | 
| Gaussian | A | Incoming message from  | 
| Gaussian | B | Incoming message from  | 
| Gaussian | to_A | Previous outgoing message to  | 
| Gaussian | to_B | Previous outgoing message to  | 
Returns
| Type | Description | 
|---|---|
| Gaussian | The outgoing EP message to the  | 
Remarks
The outgoing message is a distribution matching the moments of product as the random arguments are varied. The formula is proj[p(product) sum_(a,b) p(a,b) factor(product,a,b)]/p(product).