Class GaussianProductOp_Laplace
Provides outgoing messages for Product(Double, Double), given random arguments to the function.
Inherited Members
Namespace: Microsoft.ML.Probabilistic.Factors
Assembly: Microsoft.ML.Probabilistic.dll
Syntax
[FactorMethod(typeof(Factor), "Product", new Type[]{typeof(double), typeof(double)})]
[Buffers(new string[]{"ahat"})]
[Quality(QualityBand.Experimental)]
public class GaussianProductOp_Laplace : GaussianProductOpEvidenceBase
Remarks
This class allows EP to process the product factor using Laplace's method.
Methods
AAverageConditional(Gaussian, Gaussian, Gaussian, Double)
EP message to a
.
Declaration
public static Gaussian AAverageConditional(Gaussian Product, Gaussian A, Gaussian B, double ahat)
Parameters
Type | Name | Description |
---|---|---|
Gaussian | Product | Incoming message from |
Gaussian | A | Incoming message from |
Gaussian | B | Incoming message from |
Double | ahat | Buffer |
Returns
Type | Description |
---|---|
Gaussian | The outgoing EP message to the |
Remarks
The outgoing message is a distribution matching the moments of a
as the random arguments are varied. The formula is proj[p(a) sum_(product,b) p(product,b) factor(product,a,b)]/p(a)
.
Exceptions
Type | Condition |
---|---|
ImproperMessageException |
|
Ahat(Gaussian, Gaussian, Gaussian, Double)
Declaration
public static double Ahat(Gaussian Product, Gaussian A, Gaussian B, double ahat)
Parameters
Type | Name | Description |
---|---|---|
Gaussian | Product | |
Gaussian | A | |
Gaussian | B | |
Double | ahat |
Returns
Type | Description |
---|---|
Double |
AhatInit(Gaussian)
Declaration
public static double AhatInit(Gaussian a)
Parameters
Type | Name | Description |
---|---|---|
Gaussian | a |
Returns
Type | Description |
---|---|
Double |
BAverageConditional(Gaussian, Gaussian, Gaussian, Double)
EP message to b
.
Declaration
public static Gaussian BAverageConditional(Gaussian Product, Gaussian A, Gaussian B, double ahat)
Parameters
Type | Name | Description |
---|---|---|
Gaussian | Product | Incoming message from |
Gaussian | A | Incoming message from |
Gaussian | B | Incoming message from |
Double | ahat | Buffer |
Returns
Type | Description |
---|---|
Gaussian | The outgoing EP message to the |
Remarks
The outgoing message is a distribution matching the moments of b
as the random arguments are varied. The formula is proj[p(b) sum_(product,a) p(product,a) factor(product,a,b)]/p(b)
.
Exceptions
Type | Condition |
---|---|
ImproperMessageException |
|
GetMoments(Int32, Gaussian, Gaussian, Gaussian, Double)
Declaration
public static Gaussian GetMoments(int index, Gaussian Product, Gaussian A, Gaussian B, double ahat)
Parameters
Type | Name | Description |
---|---|---|
Int32 | index | |
Gaussian | Product | |
Gaussian | A | |
Gaussian | B | |
Double | ahat |
Returns
Type | Description |
---|---|
Gaussian |
LogAverageFactor(Gaussian, Gaussian, Gaussian, Gaussian)
Evidence message for EP.
Declaration
public static double LogAverageFactor(Gaussian Product, Gaussian A, Gaussian B, Gaussian to_A)
Parameters
Type | Name | Description |
---|---|---|
Gaussian | Product | Incoming message from |
Gaussian | A | Incoming message from |
Gaussian | B | Incoming message from |
Gaussian | to_A | Previous outgoing message to |
Returns
Type | Description |
---|---|
Double | Logarithm of the factor's average value across the given argument distributions. |
Remarks
The formula for the result is log(sum_(product,a,b) p(product,a,b) factor(product,a,b))
.
Exceptions
Type | Condition |
---|---|
ImproperMessageException |
|
ImproperMessageException |
|
ImproperMessageException |
|
LogEvidenceRatio(Gaussian, Gaussian, Gaussian)
Evidence message for EP.
Declaration
public static double LogEvidenceRatio(Gaussian Product, Gaussian A, Gaussian B)
Parameters
Type | Name | Description |
---|---|---|
Gaussian | Product | Incoming message from |
Gaussian | A | Incoming message from |
Gaussian | B | Incoming message from |
Returns
Type | Description |
---|---|
Double | Logarithm of the factor's contribution the EP model evidence. |
Remarks
The formula for the result is log(sum_(product,a,b) p(product,a,b) factor(product,a,b) / sum_product p(product) messageTo(product))
. Adding up these values across all factors and variables gives the log-evidence estimate for EP.
Exceptions
Type | Condition |
---|---|
ImproperMessageException |
|
ImproperMessageException |
|
ImproperMessageException |
|
ProductAverageConditional(Gaussian, Gaussian, Gaussian, Double)
EP message to product
.
Declaration
public static Gaussian ProductAverageConditional(Gaussian Product, Gaussian A, Gaussian B, double ahat)
Parameters
Type | Name | Description |
---|---|---|
Gaussian | Product | Incoming message from |
Gaussian | A | Incoming message from |
Gaussian | B | Incoming message from |
Double | ahat | Buffer |
Returns
Type | Description |
---|---|
Gaussian | The outgoing EP message to the |
Remarks
The outgoing message is a distribution matching the moments of product
as the random arguments are varied. The formula is proj[p(product) sum_(a,b) p(a,b) factor(product,a,b)]/p(product)
.