Search Results for

    Show / Hide Table of Contents

    Class StarRatingRecommenderEvaluator<TInstanceSource, TUser, TItem, TGroundTruthRating>

    Evaluates a recommender system which predicts star ratings.

    Inheritance
    Object
    RecommenderEvaluator<TInstanceSource, TUser, TItem, TGroundTruthRating, Int32, IDictionary<Int32, Double>>
    StarRatingRecommenderEvaluator<TInstanceSource, TUser, TItem, TGroundTruthRating>
    Inherited Members
    RecommenderEvaluator<TInstanceSource, TUser, TItem, TGroundTruthRating, Int32, IDictionary<Int32, Double>>.RecommendRatedItems<TFeatureSource>(IRecommender<TInstanceSource, TUser, TItem, Int32, IDictionary<Int32, Double>, TFeatureSource>, TInstanceSource, Int32, Int32, TFeatureSource)
    RecommenderEvaluator<TInstanceSource, TUser, TItem, TGroundTruthRating, Int32, IDictionary<Int32, Double>>.FindRelatedUsersWhoRatedSameItems<TFeatureSource>(IRecommender<TInstanceSource, TUser, TItem, Int32, IDictionary<Int32, Double>, TFeatureSource>, TInstanceSource, Int32, Int32, Int32, TFeatureSource)
    RecommenderEvaluator<TInstanceSource, TUser, TItem, TGroundTruthRating, Int32, IDictionary<Int32, Double>>.FindRelatedItemsRatedBySameUsers<TFeatureSource>(IRecommender<TInstanceSource, TUser, TItem, Int32, IDictionary<Int32, Double>, TFeatureSource>, TInstanceSource, Int32, Int32, Int32, TFeatureSource)
    RecommenderEvaluator<TInstanceSource, TUser, TItem, TGroundTruthRating, Int32, IDictionary<Int32, Double>>.RatingPredictionMetric(TInstanceSource, IDictionary<TUser, IDictionary<TItem, Int32>>, Func<TGroundTruthRating, Int32, Double>, RecommenderMetricAggregationMethod)
    RecommenderEvaluator<TInstanceSource, TUser, TItem, TGroundTruthRating, Int32, IDictionary<Int32, Double>>.RatingPredictionMetric(TInstanceSource, IDictionary<TUser, IDictionary<TItem, IDictionary<Int32, Double>>>, Func<TGroundTruthRating, IDictionary<Int32, Double>, Double>, RecommenderMetricAggregationMethod)
    RecommenderEvaluator<TInstanceSource, TUser, TItem, TGroundTruthRating, Int32, IDictionary<Int32, Double>>.ItemRecommendationMetric(TInstanceSource, IDictionary<TUser, IEnumerable<TItem>>, Func<IEnumerable<Double>, Double>, Func<TGroundTruthRating, Double>)
    RecommenderEvaluator<TInstanceSource, TUser, TItem, TGroundTruthRating, Int32, IDictionary<Int32, Double>>.ItemRecommendationMetric(TInstanceSource, IDictionary<TUser, IEnumerable<TItem>>, Func<IEnumerable<Double>, IEnumerable<Double>, Double>, Func<TGroundTruthRating, Double>)
    RecommenderEvaluator<TInstanceSource, TUser, TItem, TGroundTruthRating, Int32, IDictionary<Int32, Double>>.RelatedUsersMetric(TInstanceSource, IDictionary<TUser, IEnumerable<TUser>>, Int32, Func<IEnumerable<Double>, IEnumerable<Double>, Double>, Func<Vector, Vector, Double>, Func<TGroundTruthRating, Double>)
    RecommenderEvaluator<TInstanceSource, TUser, TItem, TGroundTruthRating, Int32, IDictionary<Int32, Double>>.RelatedUsersMetric(TInstanceSource, IDictionary<TUser, IEnumerable<TUser>>, Int32, Func<IEnumerable<Double>, Double>, Func<Vector, Vector, Double>, Func<TGroundTruthRating, Double>)
    RecommenderEvaluator<TInstanceSource, TUser, TItem, TGroundTruthRating, Int32, IDictionary<Int32, Double>>.RelatedItemsMetric(TInstanceSource, IDictionary<TItem, IEnumerable<TItem>>, Int32, Func<IEnumerable<Double>, IEnumerable<Double>, Double>, Func<Vector, Vector, Double>, Func<TGroundTruthRating, Double>)
    RecommenderEvaluator<TInstanceSource, TUser, TItem, TGroundTruthRating, Int32, IDictionary<Int32, Double>>.RelatedItemsMetric(TInstanceSource, IDictionary<TItem, IEnumerable<TItem>>, Int32, Func<IEnumerable<Double>, Double>, Func<Vector, Vector, Double>, Func<TGroundTruthRating, Double>)
    Object.Equals(Object)
    Object.Equals(Object, Object)
    Object.GetHashCode()
    Object.GetType()
    Object.MemberwiseClone()
    Object.ReferenceEquals(Object, Object)
    Object.ToString()
    Namespace: Microsoft.ML.Probabilistic.Learners
    Assembly: Microsoft.ML.Probabilistic.Learners.Recommender.dll
    Syntax
    public class StarRatingRecommenderEvaluator<TInstanceSource, TUser, TItem, TGroundTruthRating> : RecommenderEvaluator<TInstanceSource, TUser, TItem, TGroundTruthRating, int, IDictionary<int, double>>
    Type Parameters
    Name Description
    TInstanceSource

    The type of a source of instances.

    TUser

    The type of a user.

    TItem

    The type of an item.

    TGroundTruthRating

    The type of a rating in a test dataset.

    Constructors

    StarRatingRecommenderEvaluator(IStarRatingRecommenderEvaluatorMapping<TInstanceSource, TUser, TItem, TGroundTruthRating>)

    Initializes a new instance of the StarRatingRecommenderEvaluator<TInstanceSource, TUser, TItem, TGroundTruthRating> class.

    Declaration
    public StarRatingRecommenderEvaluator(IStarRatingRecommenderEvaluatorMapping<TInstanceSource, TUser, TItem, TGroundTruthRating> mapping)
    Parameters
    Type Name Description
    IStarRatingRecommenderEvaluatorMapping<TInstanceSource, TUser, TItem, TGroundTruthRating> mapping

    The mapping used for accessing data.

    Methods

    ConfusionMatrix(TInstanceSource, IDictionary<TUser, IDictionary<TItem, Int32>>, RecommenderMetricAggregationMethod)

    Computes a confusion matrix.

    Declaration
    public RatingMatrix ConfusionMatrix(TInstanceSource instanceSource, IDictionary<TUser, IDictionary<TItem, int>> predictions, RecommenderMetricAggregationMethod aggregationMethod = RecommenderMetricAggregationMethod.Default)
    Parameters
    Type Name Description
    TInstanceSource instanceSource

    The instance source providing the ground truth.

    IDictionary<TUser, IDictionary<TItem, Int32>> predictions

    A sparse users-by-items matrix of predicted rating distributions.

    RecommenderMetricAggregationMethod aggregationMethod

    A method specifying how metrics are aggregated over the whole dataset.

    Returns
    Type Description
    RatingMatrix

    The computed confusion matrix.

    ExpectedConfusionMatrix(TInstanceSource, IDictionary<TUser, IDictionary<TItem, IDictionary<Int32, Double>>>, RecommenderMetricAggregationMethod)

    Computes the expected confusion matrix.

    Declaration
    public RatingMatrix ExpectedConfusionMatrix(TInstanceSource instanceSource, IDictionary<TUser, IDictionary<TItem, IDictionary<int, double>>> predictions, RecommenderMetricAggregationMethod aggregationMethod = RecommenderMetricAggregationMethod.Default)
    Parameters
    Type Name Description
    TInstanceSource instanceSource

    The instance source providing the ground truth.

    IDictionary<TUser, IDictionary<TItem, IDictionary<Int32, Double>>> predictions

    A sparse users-by-items matrix of predicted rating distributions.

    RecommenderMetricAggregationMethod aggregationMethod

    A method specifying how metrics are aggregated over all instances.

    Returns
    Type Description
    RatingMatrix

    The computed expected confusion matrix.

    ExpectedWeightedConfusion(TInstanceSource, IDictionary<TUser, IDictionary<TItem, IDictionary<Int32, Double>>>, RatingMatrix, RecommenderMetricAggregationMethod)

    Computes the expected component-wise product of a confusion matrix and a loss matrix.

    Declaration
    public double ExpectedWeightedConfusion(TInstanceSource instanceSource, IDictionary<TUser, IDictionary<TItem, IDictionary<int, double>>> predictions, RatingMatrix lossMatrix, RecommenderMetricAggregationMethod aggregationMethod = RecommenderMetricAggregationMethod.Default)
    Parameters
    Type Name Description
    TInstanceSource instanceSource

    The instance source providing the ground truth (used to compute the expected confusion matrix).

    IDictionary<TUser, IDictionary<TItem, IDictionary<Int32, Double>>> predictions

    A sparse users-by-items matrix of predicted rating distributions (used to compute the expected confusion matrix).

    RatingMatrix lossMatrix

    The loss matrix.

    RecommenderMetricAggregationMethod aggregationMethod

    A method specifying how metrics are aggregated over all instances (used to compute the expected confusion matrix).

    Returns
    Type Description
    Double

    The computed expected weighted confusion.

    ModelDomainRatingPredictionMetric(TInstanceSource, IDictionary<TUser, IDictionary<TItem, IDictionary<Int32, Double>>>, Func<Int32, IDictionary<Int32, Double>, Double>, RecommenderMetricAggregationMethod)

    Computes the average of a given rating prediction metric using ground truth in model domain by iterating over predictions and using the aggregation method given in aggregationMethod.

    Declaration
    public double ModelDomainRatingPredictionMetric(TInstanceSource instanceSource, IDictionary<TUser, IDictionary<TItem, IDictionary<int, double>>> predictions, Func<int, IDictionary<int, double>, double> metric, RecommenderMetricAggregationMethod aggregationMethod = RecommenderMetricAggregationMethod.Default)
    Parameters
    Type Name Description
    TInstanceSource instanceSource

    The instance source providing the ground truth.

    IDictionary<TUser, IDictionary<TItem, IDictionary<Int32, Double>>> predictions

    A sparse users-by-items matrix of predicted rating distributions.

    Func<Int32, IDictionary<Int32, Double>, Double> metric

    The rating prediction metric using ground truth in model domain.

    RecommenderMetricAggregationMethod aggregationMethod

    A method specifying how metrics are aggregated over all instances.

    Returns
    Type Description
    Double

    The computed average of the given rating prediction metric.

    ModelDomainRatingPredictionMetric(TInstanceSource, IDictionary<TUser, IDictionary<TItem, Int32>>, Func<Int32, Int32, Double>, RecommenderMetricAggregationMethod)

    Computes the average of a given rating prediction metric using ground truth in model domain by iterating over predictions and using the aggregation method given in aggregationMethod.

    Declaration
    public double ModelDomainRatingPredictionMetric(TInstanceSource instanceSource, IDictionary<TUser, IDictionary<TItem, int>> predictions, Func<int, int, double> metric, RecommenderMetricAggregationMethod aggregationMethod = RecommenderMetricAggregationMethod.Default)
    Parameters
    Type Name Description
    TInstanceSource instanceSource

    The instance source providing the ground truth.

    IDictionary<TUser, IDictionary<TItem, Int32>> predictions

    A sparse users-by-items matrix of predicted rating distributions.

    Func<Int32, Int32, Double> metric

    The rating prediction metric using ground truth in model domain.

    RecommenderMetricAggregationMethod aggregationMethod

    A method specifying how metrics are aggregated over all instances.

    Returns
    Type Description
    Double

    The computed average of the given rating prediction metric.

    ModelDomainRatingPredictionMetricExpectation(TInstanceSource, IDictionary<TUser, IDictionary<TItem, IDictionary<Int32, Double>>>, Func<Int32, Int32, Double>, RecommenderMetricAggregationMethod)

    Computes the average of a given rating prediction metric using ground truth in model domain by iterating over predictions and using the aggregation method given in aggregationMethod.

    Declaration
    public double ModelDomainRatingPredictionMetricExpectation(TInstanceSource instanceSource, IDictionary<TUser, IDictionary<TItem, IDictionary<int, double>>> predictions, Func<int, int, double> metric, RecommenderMetricAggregationMethod aggregationMethod = RecommenderMetricAggregationMethod.Default)
    Parameters
    Type Name Description
    TInstanceSource instanceSource

    The instance source providing the ground truth.

    IDictionary<TUser, IDictionary<TItem, IDictionary<Int32, Double>>> predictions

    A sparse users-by-items matrix of predicted rating distributions.

    Func<Int32, Int32, Double> metric

    The rating prediction metric using ground truth in model domain.

    RecommenderMetricAggregationMethod aggregationMethod

    A method specifying how metrics are aggregated over all instances.

    Returns
    Type Description
    Double

    The computed average of the given rating prediction metric.

    ProbabilityCalibrationError(TInstanceSource, IDictionary<TUser, IDictionary<TItem, IDictionary<Int32, Double>>>, Int32, Int32)

    Computes the probability calibration error for a given rating.

    Declaration
    public double ProbabilityCalibrationError(TInstanceSource instanceSource, IDictionary<TUser, IDictionary<TItem, IDictionary<int, double>>> predictions, int rating, int bins)
    Parameters
    Type Name Description
    TInstanceSource instanceSource

    The instance source providing the ground truth.

    IDictionary<TUser, IDictionary<TItem, IDictionary<Int32, Double>>> predictions

    A sparse users-by-items matrix of predicted rating distributions.

    Int32 rating

    The rating value to generate the calibration plot for.

    Int32 bins

    The number of bins to use.

    Returns
    Type Description
    Double

    The computed probability calibration error.

    ProbabilityCalibrationPlot(TInstanceSource, IDictionary<TUser, IDictionary<TItem, IDictionary<Int32, Double>>>, Int32, Int32)

    Computes the probability calibration plot for a particular rating value.

    Declaration
    public double[] ProbabilityCalibrationPlot(TInstanceSource instanceSource, IDictionary<TUser, IDictionary<TItem, IDictionary<int, double>>> predictions, int rating, int bins)
    Parameters
    Type Name Description
    TInstanceSource instanceSource

    The instance source providing the ground truth.

    IDictionary<TUser, IDictionary<TItem, IDictionary<Int32, Double>>> predictions

    A sparse users-by-items matrix of predicted rating distributions.

    Int32 rating

    The rating value to generate the calibration plot for.

    Int32 bins

    The number of bins to use.

    Returns
    Type Description
    Double[]

    The computed probability calibration plot.

    WeightedConfusion(TInstanceSource, IDictionary<TUser, IDictionary<TItem, Int32>>, RatingMatrix, RecommenderMetricAggregationMethod)

    Computes the component-wise product of a confusion matrix and a loss matrix.

    Declaration
    public double WeightedConfusion(TInstanceSource instanceSource, IDictionary<TUser, IDictionary<TItem, int>> predictions, RatingMatrix lossMatrix, RecommenderMetricAggregationMethod aggregationMethod = RecommenderMetricAggregationMethod.Default)
    Parameters
    Type Name Description
    TInstanceSource instanceSource

    The instance source providing the ground truth (used to compute the confusion matrix).

    IDictionary<TUser, IDictionary<TItem, Int32>> predictions

    A sparse users-by-items matrix of predicted rating distributions (used to compute the confusion matrix).

    RatingMatrix lossMatrix

    The loss matrix.

    RecommenderMetricAggregationMethod aggregationMethod

    A method specifying how metrics are aggregated over all instances (used to compute the confusion matrix).

    Returns
    Type Description
    Double

    The computed weighted confusion.

    In This Article
    Back to top Copyright © .NET Foundation. All rights reserved.