Search Results for

    Show / Hide Table of Contents

    Class RandomStarRatingRecommender<TInstanceSource, TInstance, TUser, TItem, TDataRating, TFeatureSource, TFeatureValues>

    Represents a star rating recommender system which generates predictions purely by random guessing.

    Inheritance
    Object
    RandomStarRatingRecommender<TInstanceSource, TInstance, TUser, TItem, TDataRating, TFeatureSource, TFeatureValues>
    Implements
    IRecommender<TInstanceSource, TUser, TItem, Int32, IDictionary<Int32, Double>, TFeatureSource>
    ILearner
    Inherited Members
    Object.Equals(Object)
    Object.Equals(Object, Object)
    Object.GetHashCode()
    Object.GetType()
    Object.MemberwiseClone()
    Object.ReferenceEquals(Object, Object)
    Object.ToString()
    Namespace: Microsoft.ML.Probabilistic.Learners
    Assembly: Microsoft.ML.Probabilistic.Learners.Recommender.dll
    Syntax
    [SerializationVersion(1)]
    public class RandomStarRatingRecommender<TInstanceSource, TInstance, TUser, TItem, TDataRating, TFeatureSource, TFeatureValues> : IRecommender<TInstanceSource, TUser, TItem, int, IDictionary<int, double>, TFeatureSource>, ILearner
    Type Parameters
    Name Description
    TInstanceSource

    The type of a source of instances.

    TInstance

    The type of an instance.

    TUser

    The type of a user.

    TItem

    The type of an item.

    TDataRating

    The type of a rating in data.

    TFeatureSource

    The type of a feature source.

    TFeatureValues

    The type of the feature values.

    Constructors

    RandomStarRatingRecommender(IStarRatingRecommenderMapping<TInstanceSource, TInstance, TUser, TItem, TDataRating, TFeatureSource, TFeatureValues>)

    Initializes a new instance of the RandomStarRatingRecommender<TInstanceSource, TInstance, TUser, TItem, TDataRating, TFeatureSource, TFeatureValues> class.

    Declaration
    public RandomStarRatingRecommender(IStarRatingRecommenderMapping<TInstanceSource, TInstance, TUser, TItem, TDataRating, TFeatureSource, TFeatureValues> mapping)
    Parameters
    Type Name Description
    IStarRatingRecommenderMapping<TInstanceSource, TInstance, TUser, TItem, TDataRating, TFeatureSource, TFeatureValues> mapping

    The mapping used to access the data.

    Exceptions
    Type Condition
    ArgumentNullException

    Thrown if one of the required parameters is null.

    Properties

    Capabilities

    Gets the capabilities of the recommender.

    Declaration
    public IRecommenderCapabilities Capabilities { get; }
    Property Value
    Type Description
    IRecommenderCapabilities

    ItemSubset

    Gets or sets the subset of the items used for related item prediction and item recommendation.

    Declaration
    public IEnumerable<TItem> ItemSubset { get; set; }
    Property Value
    Type Description
    IEnumerable<TItem>

    Settings

    Gets or sets the settings (not supported).

    Declaration
    public ISettings Settings { get; set; }
    Property Value
    Type Description
    ISettings

    UserSubset

    Gets or sets the subset of the users used for related user prediction.

    Declaration
    public IEnumerable<TUser> UserSubset { get; set; }
    Property Value
    Type Description
    IEnumerable<TUser>

    Methods

    GetRelatedItems(TItem, Int32, TFeatureSource)

    Returns a list of items related to item by randomly permuting the ItemSubset.

    Declaration
    public IEnumerable<TItem> GetRelatedItems(TItem item, int relatedItemCount, TFeatureSource featureSource = null)
    Parameters
    Type Name Description
    TItem item

    The item for which related items should be found.

    Int32 relatedItemCount

    Maximum number of related items to return.

    TFeatureSource featureSource

    The source of features for the items.

    Returns
    Type Description
    IEnumerable<TItem>

    The list of related items.

    Remarks

    Only items specified in ItemSubset will be returned.

    GetRelatedItems(IEnumerable<TItem>, Int32, TFeatureSource)

    Returns a list of related items to each item in items by randomly permuting the ItemSubset.

    Declaration
    public IDictionary<TItem, IEnumerable<TItem>> GetRelatedItems(IEnumerable<TItem> items, int relatedItemCount, TFeatureSource featureSource = null)
    Parameters
    Type Name Description
    IEnumerable<TItem> items

    The list of items for which related items should be found.

    Int32 relatedItemCount

    Maximum number of related items to return for every item.

    TFeatureSource featureSource

    The source of features for the specified items.

    Returns
    Type Description
    IDictionary<TItem, IEnumerable<TItem>>

    The list of related items for each item from items.

    Remarks

    Only items specified in ItemSubset will be returned.

    GetRelatedUsers(TUser, Int32, TFeatureSource)

    Returns a list of users related to user by randomly permuting the UserSubset.

    Declaration
    public IEnumerable<TUser> GetRelatedUsers(TUser user, int relatedUserCount, TFeatureSource featureSource = null)
    Parameters
    Type Name Description
    TUser user

    The user for which related users should be found.

    Int32 relatedUserCount

    Maximum number of related users to return.

    TFeatureSource featureSource

    The source of features for the users.

    Returns
    Type Description
    IEnumerable<TUser>

    The list of related users.

    Remarks

    Only users specified in UserSubset will be returned.

    GetRelatedUsers(IEnumerable<TUser>, Int32, TFeatureSource)

    Returns a list of related users to each user in users by randomly permuting the UserSubset.

    Declaration
    public IDictionary<TUser, IEnumerable<TUser>> GetRelatedUsers(IEnumerable<TUser> users, int relatedUserCount, TFeatureSource featureSource = null)
    Parameters
    Type Name Description
    IEnumerable<TUser> users

    The list of users for which related users should be found.

    Int32 relatedUserCount

    Maximum number of related users to return for every user.

    TFeatureSource featureSource

    The source of features for the specified users.

    Returns
    Type Description
    IDictionary<TUser, IEnumerable<TUser>>

    The list of related users for each user from users.

    Remarks

    Only users specified in UserSubset will be returned.

    Predict(TInstanceSource, TFeatureSource)

    Predicts ratings for the specified instances by random guessing.

    Declaration
    public IDictionary<TUser, IDictionary<TItem, int>> Predict(TInstanceSource instanceSource, TFeatureSource featureSource = null)
    Parameters
    Type Name Description
    TInstanceSource instanceSource

    The instances to predict ratings for.

    TFeatureSource featureSource

    The source of features for the specified instances.

    Returns
    Type Description
    IDictionary<TUser, IDictionary<TItem, Int32>>

    The predicted ratings.

    Predict(TUser, TItem, TFeatureSource)

    Predicts rating for a given user and item by random guessing.

    Declaration
    public int Predict(TUser user, TItem item, TFeatureSource featureSource = null)
    Parameters
    Type Name Description
    TUser user

    The user.

    TItem item

    The item.

    TFeatureSource featureSource

    The source of features for the specified user and item.

    Returns
    Type Description
    Int32

    The predicted rating.

    PredictDistribution(TInstanceSource, TFeatureSource)

    Predicts rating distributions for the specified instances by returning the uniform distribution over the possible rating values.

    Declaration
    public IDictionary<TUser, IDictionary<TItem, IDictionary<int, double>>> PredictDistribution(TInstanceSource instanceSource, TFeatureSource featureSource = null)
    Parameters
    Type Name Description
    TInstanceSource instanceSource

    The instances to predict ratings for.

    TFeatureSource featureSource

    The source of features for the specified instances.

    Returns
    Type Description
    IDictionary<TUser, IDictionary<TItem, IDictionary<Int32, Double>>>

    The distributions of the predicted ratings.

    PredictDistribution(TUser, TItem, TFeatureSource)

    Predicts the distribution of a rating for a given user and item by returning a random distribution over ratings.

    Declaration
    public IDictionary<int, double> PredictDistribution(TUser user, TItem item, TFeatureSource featureSource = null)
    Parameters
    Type Name Description
    TUser user

    The user.

    TItem item

    The item.

    TFeatureSource featureSource

    The source of features for the given user and item.

    Returns
    Type Description
    IDictionary<Int32, Double>

    The distribution of the rating.

    Recommend(TUser, Int32, TFeatureSource)

    Recommends items to a given user by randomly permuting the ItemSubset.

    Declaration
    public IEnumerable<TItem> Recommend(TUser user, int recommendationCount, TFeatureSource featureSource = null)
    Parameters
    Type Name Description
    TUser user

    The user to recommend items to.

    Int32 recommendationCount

    Maximum number of items to recommend.

    TFeatureSource featureSource

    The source of features for the specified user.

    Returns
    Type Description
    IEnumerable<TItem>

    The list of recommended items.

    Remarks

    Only items specified in ItemSubset can be recommended.

    Recommend(IEnumerable<TUser>, Int32, TFeatureSource)

    Recommends items to a given list of users by randomly permuting the ItemSubset.

    Declaration
    public IDictionary<TUser, IEnumerable<TItem>> Recommend(IEnumerable<TUser> users, int recommendationCount, TFeatureSource featureSource = null)
    Parameters
    Type Name Description
    IEnumerable<TUser> users

    The list of users to recommend items to.

    Int32 recommendationCount

    Maximum number of items to recommend to a single user.

    TFeatureSource featureSource

    The source of features for the specified users.

    Returns
    Type Description
    IDictionary<TUser, IEnumerable<TItem>>

    The list of recommended items for every user from users.

    Remarks

    Only items specified in ItemSubset can be recommended.

    RecommendDistribution(TUser, Int32, TFeatureSource)

    Recommend items with their rating distributions to a specified user.

    Declaration
    public IEnumerable<Tuple<TItem, IDictionary<int, double>>> RecommendDistribution(TUser user, int recommendationCount, TFeatureSource featureSource = null)
    Parameters
    Type Name Description
    TUser user

    The user to recommend items to.

    Int32 recommendationCount

    Maximum number of items to recommend.

    TFeatureSource featureSource

    The source of features for the specified user.

    Returns
    Type Description
    IEnumerable<Tuple<TItem, IDictionary<Int32, Double>>>

    The list of recommended items and their rating distributions.

    Remarks

    Only items specified in ItemSubset can be recommended.

    RecommendDistribution(IEnumerable<TUser>, Int32, TFeatureSource)

    Recommends items with their rating distributions to a specified list of users.

    Declaration
    public IDictionary<TUser, IEnumerable<Tuple<TItem, IDictionary<int, double>>>> RecommendDistribution(IEnumerable<TUser> users, int recommendationCount, TFeatureSource featureSource = null)
    Parameters
    Type Name Description
    IEnumerable<TUser> users

    The list of users to recommend items to.

    Int32 recommendationCount

    Maximum number of items to recommend to a single user.

    TFeatureSource featureSource

    The source of features for the specified users.

    Returns
    Type Description
    IDictionary<TUser, IEnumerable<Tuple<TItem, IDictionary<Int32, Double>>>>

    The list of recommended items and their rating distributions for every user from users.

    Remarks

    Only items specified in ItemSubset can be recommended.

    Train(TInstanceSource, TFeatureSource)

    Trains the recommender on the specified instances. For the random recommender it results in just retrieving the rating info, as well as the list of items and users from the training set.

    Declaration
    public void Train(TInstanceSource instanceSource, TFeatureSource featureSource = null)
    Parameters
    Type Name Description
    TInstanceSource instanceSource

    The source of instances to train on.

    TFeatureSource featureSource

    The source of features for the specified instances.

    Explicit Interface Implementations

    ILearner.Capabilities

    Gets the capabilities of the learner. These are any properties of the learner that are not captured by the type signature of the most specific learner interface below.

    Declaration
    ICapabilities ILearner.Capabilities { get; }
    Returns
    Type Description
    ICapabilities

    Implements

    IRecommender<TInstanceSource, TUser, TItem, TRating, TRatingDistribution, TFeatureSource>
    ILearner
    In This Article
    Back to top Copyright © .NET Foundation. All rights reserved.