Search Results for

    Show / Hide Table of Contents

    Class ClassifierEvaluator<TInstanceSource, TInstance, TLabelSource, TLabel>

    Evaluates the predictions of a classifier.

    Inheritance
    Object
    ClassifierEvaluator<TInstanceSource, TInstance, TLabelSource, TLabel>
    Inherited Members
    Object.Equals(Object)
    Object.Equals(Object, Object)
    Object.GetHashCode()
    Object.GetType()
    Object.MemberwiseClone()
    Object.ReferenceEquals(Object, Object)
    Object.ToString()
    Namespace: Microsoft.ML.Probabilistic.Learners
    Assembly: Microsoft.ML.Probabilistic.Learners.Classifier.dll
    Syntax
    public class ClassifierEvaluator<TInstanceSource, TInstance, TLabelSource, TLabel>
    Type Parameters
    Name Description
    TInstanceSource

    The type of a source of instances.

    TInstance

    The type of an instance.

    TLabelSource

    The type of a source of labels.

    TLabel

    The type of a label.

    Remarks

    Assumes that there are as many predictions as ground truth instances and that the order of the predictions matches the order of the ground truth instances.

    Constructors

    ClassifierEvaluator(IClassifierEvaluatorMapping<TInstanceSource, TInstance, TLabelSource, TLabel>)

    Initializes a new instance of the ClassifierEvaluator<TInstanceSource, TInstance, TLabelSource, TLabel> class.

    Declaration
    public ClassifierEvaluator(IClassifierEvaluatorMapping<TInstanceSource, TInstance, TLabelSource, TLabel> mapping)
    Parameters
    Type Name Description
    IClassifierEvaluatorMapping<TInstanceSource, TInstance, TLabelSource, TLabel> mapping

    The mapping to access the ground truth labels.

    Methods

    AreaUnderRocCurve(TInstanceSource, TLabelSource, IEnumerable<IDictionary<TLabel, Double>>)

    Computes the area under the receiver operating characteristic curve for specified predictions given the ground truth provided by an instance or label source.

    See Hand, D.J. and Till, R.J. (2001): "A simple generalization of the Area Under the ROC Curve for Multiple Class Classification Problems". Machine Learning, 45, pages 171-186.

    Declaration
    public double AreaUnderRocCurve(TInstanceSource instanceSource, TLabelSource labelSource, IEnumerable<IDictionary<TLabel, double>> predictions)
    Parameters
    Type Name Description
    TInstanceSource instanceSource

    The instance source.

    TLabelSource labelSource

    The label source.

    IEnumerable<IDictionary<TLabel, Double>> predictions

    The predictions.

    Returns
    Type Description
    Double

    The area under the receiver operating characteristic curve. Returns NaN if there are no positive or no negative instances.

    AreaUnderRocCurve(TInstanceSource, TLabelSource, IEnumerable<IDictionary<TLabel, Double>>, out IDictionary<TLabel, IDictionary<TLabel, Double>>)

    Computes the area under the receiver operating characteristic curve for specified predictions given the ground truth provided by an instance or label source.

    See Hand, D.J. and Till, R.J. (2001): "A simple generalization of the Area Under the ROC Curve for Multiple Class Classification Problems". Machine Learning, 45, pages 171-186.

    Declaration
    public double AreaUnderRocCurve(TInstanceSource instanceSource, TLabelSource labelSource, IEnumerable<IDictionary<TLabel, double>> predictions, out IDictionary<TLabel, IDictionary<TLabel, double>> aucMatrix)
    Parameters
    Type Name Description
    TInstanceSource instanceSource

    The instance source.

    TLabelSource labelSource

    The label source.

    IEnumerable<IDictionary<TLabel, Double>> predictions

    The predictions.

    IDictionary<TLabel, IDictionary<TLabel, Double>> aucMatrix

    A matrix of pairwise AUC metrics. If the area under the curve is not defined for a given pair of classes, the corresponding element in the matrix is NaN.

    Returns
    Type Description
    Double

    The area under the receiver operating characteristic curve. Returns NaN if there are no positive or no negative instances.

    AreaUnderRocCurve(TInstanceSource, IEnumerable<IDictionary<TLabel, Double>>)

    Computes the area under the receiver operating characteristic curve for specified predictions given the ground truth provided by an instance source.

    See Hand, D.J. and Till, R.J. (2001): "A simple generalization of the Area Under the ROC Curve for Multiple Class Classification Problems". Machine Learning, 45, pages 171-186.

    Declaration
    public double AreaUnderRocCurve(TInstanceSource instanceSource, IEnumerable<IDictionary<TLabel, double>> predictions)
    Parameters
    Type Name Description
    TInstanceSource instanceSource

    The instance source.

    IEnumerable<IDictionary<TLabel, Double>> predictions

    The predictions.

    Returns
    Type Description
    Double

    The area under the receiver operating characteristic curve. Returns NaN if there are no positive or no negative instances.

    AreaUnderRocCurve(TInstanceSource, IEnumerable<IDictionary<TLabel, Double>>, out IDictionary<TLabel, IDictionary<TLabel, Double>>)

    Computes the area under the receiver operating characteristic curve for specified predictions given the ground truth provided by an instance source.

    See Hand, D.J. and Till, R.J. (2001): "A simple generalization of the Area Under the ROC Curve for Multiple Class Classification Problems". Machine Learning, 45, pages 171-186.

    Declaration
    public double AreaUnderRocCurve(TInstanceSource instanceSource, IEnumerable<IDictionary<TLabel, double>> predictions, out IDictionary<TLabel, IDictionary<TLabel, double>> aucMatrix)
    Parameters
    Type Name Description
    TInstanceSource instanceSource

    The instance source.

    IEnumerable<IDictionary<TLabel, Double>> predictions

    The predictions.

    IDictionary<TLabel, IDictionary<TLabel, Double>> aucMatrix

    A matrix of pairwise AUC metrics. If the area under the curve is not defined for a given pair of classes, the corresponding element in the matrix is NaN.

    Returns
    Type Description
    Double

    The area under the receiver operating characteristic curve. Returns NaN if there are no positive or no negative instances.

    AreaUnderRocCurve(TLabel, TInstanceSource, TLabelSource, IEnumerable<IDictionary<TLabel, Double>>)

    Computes the area under the receiver operating characteristic curve for specified predictions given the ground truth provided by an instance or label source.

    Declaration
    public double AreaUnderRocCurve(TLabel positiveClassLabel, TInstanceSource instanceSource, TLabelSource labelSource, IEnumerable<IDictionary<TLabel, double>> predictions)
    Parameters
    Type Name Description
    TLabel positiveClassLabel

    The label of the positive class.

    TInstanceSource instanceSource

    The instance source.

    TLabelSource labelSource

    The label source.

    IEnumerable<IDictionary<TLabel, Double>> predictions

    The predictions.

    Returns
    Type Description
    Double

    The area under the receiver operating characteristic curve.

    AreaUnderRocCurve(TLabel, TInstanceSource, IEnumerable<IDictionary<TLabel, Double>>)

    Computes the area under the receiver operating characteristic curve for specified predictions given the ground truth provided by an instance source.

    Declaration
    public double AreaUnderRocCurve(TLabel positiveClassLabel, TInstanceSource instanceSource, IEnumerable<IDictionary<TLabel, double>> predictions)
    Parameters
    Type Name Description
    TLabel positiveClassLabel

    The label of the positive class.

    TInstanceSource instanceSource

    The instance source.

    IEnumerable<IDictionary<TLabel, Double>> predictions

    The predictions.

    Returns
    Type Description
    Double

    The area under the receiver operating characteristic curve.

    AreaUnderRocCurve(TLabel, TLabel, TInstanceSource, TLabelSource, IEnumerable<IDictionary<TLabel, Double>>)

    Computes the area under the receiver operating characteristic curve for specified predictions given the ground truth provided by an instance or label source.

    Declaration
    public double AreaUnderRocCurve(TLabel positiveClassLabel, TLabel negativeClassLabel, TInstanceSource instanceSource, TLabelSource labelSource, IEnumerable<IDictionary<TLabel, double>> predictions)
    Parameters
    Type Name Description
    TLabel positiveClassLabel

    The label of the positive class.

    TLabel negativeClassLabel

    The label of the negative class.

    TInstanceSource instanceSource

    The instance source.

    TLabelSource labelSource

    The label source.

    IEnumerable<IDictionary<TLabel, Double>> predictions

    The predictions.

    Returns
    Type Description
    Double

    The area under the receiver operating characteristic curve.

    AreaUnderRocCurve(TLabel, TLabel, TInstanceSource, IEnumerable<IDictionary<TLabel, Double>>)

    Computes the area under the receiver operating characteristic curve for specified predictions given the ground truth provided by an instance source.

    Declaration
    public double AreaUnderRocCurve(TLabel positiveClassLabel, TLabel negativeClassLabel, TInstanceSource instanceSource, IEnumerable<IDictionary<TLabel, double>> predictions)
    Parameters
    Type Name Description
    TLabel positiveClassLabel

    The label of the positive class.

    TLabel negativeClassLabel

    The label of the negative class.

    TInstanceSource instanceSource

    The instance source.

    IEnumerable<IDictionary<TLabel, Double>> predictions

    The predictions.

    Returns
    Type Description
    Double

    The area under the receiver operating characteristic curve.

    CalibrationCurve(TLabel, TInstanceSource, TLabelSource, IEnumerable<IDictionary<TLabel, Double>>)

    Computes the empirical probability calibration curve for the class of the specified label.

    Declaration
    public IEnumerable<CalibrationPair> CalibrationCurve(TLabel positiveClassLabel, TInstanceSource instanceSource, TLabelSource labelSource, IEnumerable<IDictionary<TLabel, double>> predictions)
    Parameters
    Type Name Description
    TLabel positiveClassLabel

    The label of the class to compute the curve for.

    TInstanceSource instanceSource

    The instance source.

    TLabelSource labelSource

    The label source.

    IEnumerable<IDictionary<TLabel, Double>> predictions

    The predictions.

    Returns
    Type Description
    IEnumerable<CalibrationPair>

    The computed empirical probability calibration curve.

    CalibrationCurve(TLabel, TInstanceSource, TLabelSource, IEnumerable<IDictionary<TLabel, Double>>, Int32, Int32)

    Computes the empirical probability calibration curve for the class of the specified label.

    Declaration
    public IEnumerable<CalibrationPair> CalibrationCurve(TLabel positiveClassLabel, TInstanceSource instanceSource, TLabelSource labelSource, IEnumerable<IDictionary<TLabel, double>> predictions, int binCount, int minBinInstanceCount = 1)
    Parameters
    Type Name Description
    TLabel positiveClassLabel

    The label of the class to compute the curve for.

    TInstanceSource instanceSource

    The instance source.

    TLabelSource labelSource

    The label source.

    IEnumerable<IDictionary<TLabel, Double>> predictions

    The predictions.

    Int32 binCount

    The number of bins to use.

    Int32 minBinInstanceCount

    The minimal number of instances per bin. Defaults to 1.

    Returns
    Type Description
    IEnumerable<CalibrationPair>

    The computed empirical probability calibration curve.

    CalibrationCurve(TLabel, TInstanceSource, IEnumerable<IDictionary<TLabel, Double>>)

    Computes the empirical probability calibration curve for the class of the specified label.

    Declaration
    public IEnumerable<CalibrationPair> CalibrationCurve(TLabel positiveClassLabel, TInstanceSource instanceSource, IEnumerable<IDictionary<TLabel, double>> predictions)
    Parameters
    Type Name Description
    TLabel positiveClassLabel

    The label of the class to compute the curve for.

    TInstanceSource instanceSource

    The instance source.

    IEnumerable<IDictionary<TLabel, Double>> predictions

    The predictions.

    Returns
    Type Description
    IEnumerable<CalibrationPair>

    The computed empirical probability calibration curve.

    CalibrationCurve(TLabel, TInstanceSource, IEnumerable<IDictionary<TLabel, Double>>, Int32, Int32)

    Computes the empirical probability calibration curve for the class of the specified label.

    Declaration
    public IEnumerable<CalibrationPair> CalibrationCurve(TLabel positiveClassLabel, TInstanceSource instanceSource, IEnumerable<IDictionary<TLabel, double>> predictions, int binCount, int minBinInstanceCount = 1)
    Parameters
    Type Name Description
    TLabel positiveClassLabel

    The label of the class to compute the curve for.

    TInstanceSource instanceSource

    The instance source.

    IEnumerable<IDictionary<TLabel, Double>> predictions

    The predictions.

    Int32 binCount

    The number of bins to use.

    Int32 minBinInstanceCount

    The minimal number of instances per bin. Defaults to 1.

    Returns
    Type Description
    IEnumerable<CalibrationPair>

    The computed empirical probability calibration curve.

    ConfusionMatrix(TInstanceSource, TLabelSource, IEnumerable<TLabel>)

    Computes a confusion matrix for specified predictions given the ground truth provided by an instance or label source.

    Declaration
    public ConfusionMatrix<TLabel> ConfusionMatrix(TInstanceSource instanceSource, TLabelSource labelSource, IEnumerable<TLabel> predictions)
    Parameters
    Type Name Description
    TInstanceSource instanceSource

    The instance source.

    TLabelSource labelSource

    The label source.

    IEnumerable<TLabel> predictions

    The predictions.

    Returns
    Type Description
    ConfusionMatrix<TLabel>

    The computed confusion matrix.

    ConfusionMatrix(TInstanceSource, IEnumerable<TLabel>)

    Computes a confusion matrix for specified predictions given the ground truth provided by an instance source.

    Declaration
    public ConfusionMatrix<TLabel> ConfusionMatrix(TInstanceSource instanceSource, IEnumerable<TLabel> predictions)
    Parameters
    Type Name Description
    TInstanceSource instanceSource

    The instance source.

    IEnumerable<TLabel> predictions

    The predictions.

    Returns
    Type Description
    ConfusionMatrix<TLabel>

    The computed confusion matrix.

    Evaluate<TPrediction>(TInstanceSource, TLabelSource, IEnumerable<TPrediction>, Func<TLabel, TPrediction, Double>)

    Computes a performance metric for specified predictions and ground truth as provided by a given instance or label source.

    Declaration
    public double Evaluate<TPrediction>(TInstanceSource instanceSource, TLabelSource labelSource, IEnumerable<TPrediction> predictions, Func<TLabel, TPrediction, double> performanceMetric)
    Parameters
    Type Name Description
    TInstanceSource instanceSource

    The instance source.

    TLabelSource labelSource

    The label source.

    IEnumerable<TPrediction> predictions

    The predictions.

    Func<TLabel, TPrediction, Double> performanceMetric

    The performance metric.

    Returns
    Type Description
    Double

    The computed performance metric.

    Type Parameters
    Name Description
    TPrediction

    The type of the prediction.

    Evaluate<TPrediction>(TInstanceSource, IEnumerable<TPrediction>, Func<TLabel, TPrediction, Double>)

    Computes a performance metric for specified predictions and ground truth as provided by a given instance source.

    Declaration
    public double Evaluate<TPrediction>(TInstanceSource instanceSource, IEnumerable<TPrediction> predictions, Func<TLabel, TPrediction, double> performanceMetric)
    Parameters
    Type Name Description
    TInstanceSource instanceSource

    The instance source.

    IEnumerable<TPrediction> predictions

    The predictions.

    Func<TLabel, TPrediction, Double> performanceMetric

    The performance metric.

    Returns
    Type Description
    Double

    The computed performance metric.

    Type Parameters
    Name Description
    TPrediction

    The type of the prediction.

    EvaluateOneVersusAnother<TResult>(TLabel, TLabel, TInstanceSource, TLabelSource, IEnumerable<IDictionary<TLabel, Double>>, Func<IEnumerable<Int32>, IDictionary<Int32, Double>, TResult>)

    Computes a performance metric for specified positive and negative classes.

    Declaration
    public TResult EvaluateOneVersusAnother<TResult>(TLabel positiveClassLabel, TLabel negativeClassLabel, TInstanceSource instanceSource, TLabelSource labelSource, IEnumerable<IDictionary<TLabel, double>> predictions, Func<IEnumerable<int>, IDictionary<int, double>, TResult> performanceMetric)
    Parameters
    Type Name Description
    TLabel positiveClassLabel

    The label of the positive class.

    TLabel negativeClassLabel

    The label of the negative class.

    TInstanceSource instanceSource

    The instance source.

    TLabelSource labelSource

    The label source.

    IEnumerable<IDictionary<TLabel, Double>> predictions

    The predictions.

    Func<IEnumerable<Int32>, IDictionary<Int32, Double>, TResult> performanceMetric

    The performance metric.

    Returns
    Type Description
    TResult

    The computed performance metric.

    Type Parameters
    Name Description
    TResult

    The result of the performance metric.

    EvaluateOneVersusAnother<TResult>(TLabel, TLabel, TInstanceSource, IEnumerable<IDictionary<TLabel, Double>>, Func<IEnumerable<Int32>, IDictionary<Int32, Double>, TResult>)

    Computes a performance metric for specified positive and negative classes.

    Declaration
    public TResult EvaluateOneVersusAnother<TResult>(TLabel positiveClassLabel, TLabel negativeClassLabel, TInstanceSource instanceSource, IEnumerable<IDictionary<TLabel, double>> predictions, Func<IEnumerable<int>, IDictionary<int, double>, TResult> performanceMetric)
    Parameters
    Type Name Description
    TLabel positiveClassLabel

    The label of the positive class.

    TLabel negativeClassLabel

    The label of the negative class.

    TInstanceSource instanceSource

    The instance source.

    IEnumerable<IDictionary<TLabel, Double>> predictions

    The predictions.

    Func<IEnumerable<Int32>, IDictionary<Int32, Double>, TResult> performanceMetric

    The performance metric.

    Returns
    Type Description
    TResult

    The computed performance metric.

    Type Parameters
    Name Description
    TResult

    The result of the performance metric.

    EvaluateOneVersusRest<TResult>(TLabel, TInstanceSource, TLabelSource, IEnumerable<IDictionary<TLabel, Double>>, Func<IEnumerable<Int32>, IDictionary<Int32, Double>, TResult>)

    Computes a performance metric for a specified positive class, assuming all other classes are negative.

    Declaration
    public TResult EvaluateOneVersusRest<TResult>(TLabel positiveClassLabel, TInstanceSource instanceSource, TLabelSource labelSource, IEnumerable<IDictionary<TLabel, double>> predictions, Func<IEnumerable<int>, IDictionary<int, double>, TResult> performanceMetric)
    Parameters
    Type Name Description
    TLabel positiveClassLabel

    The label of the positive class.

    TInstanceSource instanceSource

    The instance source.

    TLabelSource labelSource

    The label source.

    IEnumerable<IDictionary<TLabel, Double>> predictions

    The predictions.

    Func<IEnumerable<Int32>, IDictionary<Int32, Double>, TResult> performanceMetric

    The performance metric.

    Returns
    Type Description
    TResult

    The computed performance metric.

    Type Parameters
    Name Description
    TResult

    The result of the performance metric.

    EvaluateOneVersusRest<TResult>(TLabel, TInstanceSource, IEnumerable<IDictionary<TLabel, Double>>, Func<IEnumerable<Int32>, IDictionary<Int32, Double>, TResult>)

    Computes a performance metric for a specified positive class, assuming all other classes are negative.

    Declaration
    public TResult EvaluateOneVersusRest<TResult>(TLabel positiveClassLabel, TInstanceSource instanceSource, IEnumerable<IDictionary<TLabel, double>> predictions, Func<IEnumerable<int>, IDictionary<int, double>, TResult> performanceMetric)
    Parameters
    Type Name Description
    TLabel positiveClassLabel

    The label of the positive class.

    TInstanceSource instanceSource

    The instance source.

    IEnumerable<IDictionary<TLabel, Double>> predictions

    The predictions.

    Func<IEnumerable<Int32>, IDictionary<Int32, Double>, TResult> performanceMetric

    The performance metric.

    Returns
    Type Description
    TResult

    The computed performance metric.

    Type Parameters
    Name Description
    TResult

    The result of the performance metric.

    PrecisionRecallCurve(TLabel, TInstanceSource, TLabelSource, IEnumerable<IDictionary<TLabel, Double>>)

    Computes the precision-recall curve for specified predictions given the ground truth provided by an instance or label source.

    Declaration
    public IEnumerable<PrecisionRecall> PrecisionRecallCurve(TLabel positiveClassLabel, TInstanceSource instanceSource, TLabelSource labelSource, IEnumerable<IDictionary<TLabel, double>> predictions)
    Parameters
    Type Name Description
    TLabel positiveClassLabel

    The label of the positive class.

    TInstanceSource instanceSource

    The instance source.

    TLabelSource labelSource

    The label source.

    IEnumerable<IDictionary<TLabel, Double>> predictions

    The predictions.

    Returns
    Type Description
    IEnumerable<PrecisionRecall>

    The computed precision-recall curve.

    PrecisionRecallCurve(TLabel, TInstanceSource, IEnumerable<IDictionary<TLabel, Double>>)

    Computes the precision-recall curve for specified predictions given the ground truth provided by an instance source.

    Declaration
    public IEnumerable<PrecisionRecall> PrecisionRecallCurve(TLabel positiveClassLabel, TInstanceSource instanceSource, IEnumerable<IDictionary<TLabel, double>> predictions)
    Parameters
    Type Name Description
    TLabel positiveClassLabel

    The label of the positive class.

    TInstanceSource instanceSource

    The instance source.

    IEnumerable<IDictionary<TLabel, Double>> predictions

    The predictions.

    Returns
    Type Description
    IEnumerable<PrecisionRecall>

    The computed precision-recall curve.

    PrecisionRecallCurve(TLabel, TLabel, TInstanceSource, TLabelSource, IEnumerable<IDictionary<TLabel, Double>>)

    Computes the precision-recall curve for specified predictions given the ground truth provided by an instance or label source.

    Declaration
    public IEnumerable<PrecisionRecall> PrecisionRecallCurve(TLabel positiveClassLabel, TLabel negativeClassLabel, TInstanceSource instanceSource, TLabelSource labelSource, IEnumerable<IDictionary<TLabel, double>> predictions)
    Parameters
    Type Name Description
    TLabel positiveClassLabel

    The label of the positive class.

    TLabel negativeClassLabel

    The label of the negative class.

    TInstanceSource instanceSource

    The instance source.

    TLabelSource labelSource

    The label source.

    IEnumerable<IDictionary<TLabel, Double>> predictions

    The predictions.

    Returns
    Type Description
    IEnumerable<PrecisionRecall>

    The computed precision-recall curve.

    PrecisionRecallCurve(TLabel, TLabel, TInstanceSource, IEnumerable<IDictionary<TLabel, Double>>)

    Computes the precision-recall curve for specified predictions given the ground truth provided by an instance source.

    Declaration
    public IEnumerable<PrecisionRecall> PrecisionRecallCurve(TLabel positiveClassLabel, TLabel negativeClassLabel, TInstanceSource instanceSource, IEnumerable<IDictionary<TLabel, double>> predictions)
    Parameters
    Type Name Description
    TLabel positiveClassLabel

    The label of the positive class.

    TLabel negativeClassLabel

    The label of the negative class.

    TInstanceSource instanceSource

    The instance source.

    IEnumerable<IDictionary<TLabel, Double>> predictions

    The predictions.

    Returns
    Type Description
    IEnumerable<PrecisionRecall>

    The computed precision-recall curve.

    ReceiverOperatingCharacteristicCurve(TLabel, TInstanceSource, TLabelSource, IEnumerable<IDictionary<TLabel, Double>>)

    Computes the receiver operating characteristic curve for specified predictions given the ground truth provided by an instance or label source.

    Declaration
    public IEnumerable<FalseAndTruePositiveRate> ReceiverOperatingCharacteristicCurve(TLabel positiveClassLabel, TInstanceSource instanceSource, TLabelSource labelSource, IEnumerable<IDictionary<TLabel, double>> predictions)
    Parameters
    Type Name Description
    TLabel positiveClassLabel

    The label of the positive class.

    TInstanceSource instanceSource

    The instance source.

    TLabelSource labelSource

    The label source.

    IEnumerable<IDictionary<TLabel, Double>> predictions

    The predictions.

    Returns
    Type Description
    IEnumerable<FalseAndTruePositiveRate>

    The computed receiver operating characteristic curve.

    ReceiverOperatingCharacteristicCurve(TLabel, TInstanceSource, IEnumerable<IDictionary<TLabel, Double>>)

    Computes the receiver operating characteristic curve for specified predictions given the ground truth provided by an instance source.

    Declaration
    public IEnumerable<FalseAndTruePositiveRate> ReceiverOperatingCharacteristicCurve(TLabel positiveClassLabel, TInstanceSource instanceSource, IEnumerable<IDictionary<TLabel, double>> predictions)
    Parameters
    Type Name Description
    TLabel positiveClassLabel

    The label of the positive class.

    TInstanceSource instanceSource

    The instance source.

    IEnumerable<IDictionary<TLabel, Double>> predictions

    The predictions.

    Returns
    Type Description
    IEnumerable<FalseAndTruePositiveRate>

    The computed receiver operating characteristic curve.

    ReceiverOperatingCharacteristicCurve(TLabel, TLabel, TInstanceSource, TLabelSource, IEnumerable<IDictionary<TLabel, Double>>)

    Computes the receiver operating characteristic curve for specified predictions given the ground truth provided by an instance or label source.

    Declaration
    public IEnumerable<FalseAndTruePositiveRate> ReceiverOperatingCharacteristicCurve(TLabel positiveClassLabel, TLabel negativeClassLabel, TInstanceSource instanceSource, TLabelSource labelSource, IEnumerable<IDictionary<TLabel, double>> predictions)
    Parameters
    Type Name Description
    TLabel positiveClassLabel

    The label of the positive class.

    TLabel negativeClassLabel

    The label of the negative class.

    TInstanceSource instanceSource

    The instance source.

    TLabelSource labelSource

    The label source.

    IEnumerable<IDictionary<TLabel, Double>> predictions

    The predictions.

    Returns
    Type Description
    IEnumerable<FalseAndTruePositiveRate>

    The computed receiver operating characteristic curve.

    ReceiverOperatingCharacteristicCurve(TLabel, TLabel, TInstanceSource, IEnumerable<IDictionary<TLabel, Double>>)

    Computes the receiver operating characteristic curve for specified predictions given the ground truth provided by an instance source.

    Declaration
    public IEnumerable<FalseAndTruePositiveRate> ReceiverOperatingCharacteristicCurve(TLabel positiveClassLabel, TLabel negativeClassLabel, TInstanceSource instanceSource, IEnumerable<IDictionary<TLabel, double>> predictions)
    Parameters
    Type Name Description
    TLabel positiveClassLabel

    The label of the positive class.

    TLabel negativeClassLabel

    The label of the negative class.

    TInstanceSource instanceSource

    The instance source.

    IEnumerable<IDictionary<TLabel, Double>> predictions

    The predictions.

    Returns
    Type Description
    IEnumerable<FalseAndTruePositiveRate>

    The computed receiver operating characteristic curve.

    In This Article
    Back to top Copyright © .NET Foundation. All rights reserved.