Search Results for

    Show / Hide Table of Contents

    Class WishartFromShapeAndScaleOp

    Provides outgoing messages for SampleFromShapeAndScale(Double, PositiveDefiniteMatrix), given random arguments to the function.

    Inheritance
    Object
    WishartFromShapeAndScaleOp
    Inherited Members
    Object.Equals(Object)
    Object.Equals(Object, Object)
    Object.GetHashCode()
    Object.GetType()
    Object.MemberwiseClone()
    Object.ReferenceEquals(Object, Object)
    Object.ToString()
    Namespace: Microsoft.ML.Probabilistic.Factors
    Assembly: Microsoft.ML.Probabilistic.dll
    Syntax
    [FactorMethod(typeof(Wishart), "SampleFromShapeAndScale", new Type[]{})]
    [Quality(QualityBand.Stable)]
    public static class WishartFromShapeAndScaleOp

    Methods

    AverageLogFactor(Wishart, Wishart)

    Evidence message for VMP.

    Declaration
    public static double AverageLogFactor(Wishart sample, Wishart to_sample)
    Parameters
    Type Name Description
    Wishart sample

    Incoming message from sample.

    Wishart to_sample

    Outgoing message to sample.

    Returns
    Type Description
    Double

    Average of the factor's log-value across the given argument distributions.

    Remarks

    The formula for the result is sum_(sample) p(sample) log(factor(sample,shape,scale)). Adding up these values across all factors and variables gives the log-evidence estimate for VMP.

    AverageLogFactor(PositiveDefiniteMatrix, Double, PositiveDefiniteMatrix)

    Evidence message for VMP.

    Declaration
    public static double AverageLogFactor(PositiveDefiniteMatrix sample, double shape, PositiveDefiniteMatrix scale)
    Parameters
    Type Name Description
    PositiveDefiniteMatrix sample

    Constant value for sample.

    Double shape

    Constant value for shape.

    PositiveDefiniteMatrix scale

    Constant value for scale.

    Returns
    Type Description
    Double

    Average of the factor's log-value across the given argument distributions.

    Remarks

    The formula for the result is log(factor(sample,shape,scale)). Adding up these values across all factors and variables gives the log-evidence estimate for VMP.

    LogAverageFactor(Wishart, Wishart)

    Evidence message for EP.

    Declaration
    public static double LogAverageFactor(Wishart sample, Wishart to_sample)
    Parameters
    Type Name Description
    Wishart sample

    Incoming message from sample.

    Wishart to_sample

    Outgoing message to sample.

    Returns
    Type Description
    Double

    Logarithm of the factor's average value across the given argument distributions.

    Remarks

    The formula for the result is log(sum_(sample) p(sample) factor(sample,shape,scale)).

    LogAverageFactor(PositiveDefiniteMatrix, Double, PositiveDefiniteMatrix)

    Evidence message for EP.

    Declaration
    public static double LogAverageFactor(PositiveDefiniteMatrix sample, double shape, PositiveDefiniteMatrix scale)
    Parameters
    Type Name Description
    PositiveDefiniteMatrix sample

    Constant value for sample.

    Double shape

    Constant value for shape.

    PositiveDefiniteMatrix scale

    Constant value for scale.

    Returns
    Type Description
    Double

    Logarithm of the factor's average value across the given argument distributions.

    Remarks

    The formula for the result is log(factor(sample,shape,scale)).

    LogEvidenceRatio(Wishart, Double, PositiveDefiniteMatrix)

    Evidence message for EP.

    Declaration
    public static double LogEvidenceRatio(Wishart sample, double shape, PositiveDefiniteMatrix scale)
    Parameters
    Type Name Description
    Wishart sample

    Incoming message from sample.

    Double shape

    Constant value for shape.

    PositiveDefiniteMatrix scale

    Constant value for scale.

    Returns
    Type Description
    Double

    Logarithm of the factor's contribution the EP model evidence.

    Remarks

    The formula for the result is log(sum_(sample) p(sample) factor(sample,shape,scale) / sum_sample p(sample) messageTo(sample)). Adding up these values across all factors and variables gives the log-evidence estimate for EP.

    LogEvidenceRatio(PositiveDefiniteMatrix, Double, PositiveDefiniteMatrix)

    Evidence message for EP.

    Declaration
    public static double LogEvidenceRatio(PositiveDefiniteMatrix sample, double shape, PositiveDefiniteMatrix scale)
    Parameters
    Type Name Description
    PositiveDefiniteMatrix sample

    Constant value for sample.

    Double shape

    Constant value for shape.

    PositiveDefiniteMatrix scale

    Constant value for scale.

    Returns
    Type Description
    Double

    Logarithm of the factor's contribution the EP model evidence.

    Remarks

    The formula for the result is log(factor(sample,shape,scale)). Adding up these values across all factors and variables gives the log-evidence estimate for EP.

    SampleAverageConditional(Double, PositiveDefiniteMatrix)

    EP message to sample.

    Declaration
    public static Wishart SampleAverageConditional(double shape, PositiveDefiniteMatrix scale)
    Parameters
    Type Name Description
    Double shape

    Constant value for shape.

    PositiveDefiniteMatrix scale

    Constant value for scale.

    Returns
    Type Description
    Wishart

    The outgoing EP message to the sample argument.

    Remarks

    The outgoing message is the factor viewed as a function of sample conditioned on the given values.

    SampleAverageLogarithm(Double, PositiveDefiniteMatrix)

    VMP message to sample.

    Declaration
    public static Wishart SampleAverageLogarithm(double shape, PositiveDefiniteMatrix scale)
    Parameters
    Type Name Description
    Double shape

    Constant value for shape.

    PositiveDefiniteMatrix scale

    Constant value for scale.

    Returns
    Type Description
    Wishart

    The outgoing VMP message to the sample argument.

    Remarks

    The outgoing message is the factor viewed as a function of sample conditioned on the given values.

    In This Article
    Back to top Copyright © .NET Foundation. All rights reserved.