Search Results for

    Show / Hide Table of Contents

    Class WishartFromShapeAndRateOp_Laplace2

    Provides outgoing messages for SampleFromShapeAndRate(Double, PositiveDefiniteMatrix), given random arguments to the function.

    Inheritance
    Object
    WishartFromShapeAndRateOp_Laplace2
    Inherited Members
    Object.Equals(Object)
    Object.Equals(Object, Object)
    Object.GetHashCode()
    Object.GetType()
    Object.MemberwiseClone()
    Object.ReferenceEquals(Object, Object)
    Object.ToString()
    Namespace: Microsoft.ML.Probabilistic.Factors
    Assembly: Microsoft.ML.Probabilistic.dll
    Syntax
    [FactorMethod(typeof(Wishart), "SampleFromShapeAndRate", new Type[]{typeof(double), typeof(PositiveDefiniteMatrix)})]
    [Quality(QualityBand.Experimental)]
    public static class WishartFromShapeAndRateOp_Laplace2

    Methods

    LogAverageFactor(Wishart, Double, Wishart, Wishart)

    Evidence message for EP.

    Declaration
    public static double LogAverageFactor(Wishart sample, double shape, Wishart rate, Wishart to_sample)
    Parameters
    Type Name Description
    Wishart sample

    Incoming message from sample.

    Double shape

    Constant value for shape.

    Wishart rate

    Incoming message from rate.

    Wishart to_sample

    Outgoing message to sample.

    Returns
    Type Description
    Double

    Logarithm of the factor's average value across the given argument distributions.

    Remarks

    The formula for the result is log(sum_(sample,rate) p(sample,rate) factor(sample,shape,rate)).

    LogEvidenceRatio(Wishart, Double, Wishart, Wishart)

    Evidence message for EP.

    Declaration
    public static double LogEvidenceRatio(Wishart sample, double shape, Wishart rate, Wishart to_sample)
    Parameters
    Type Name Description
    Wishart sample

    Incoming message from sample.

    Double shape

    Constant value for shape.

    Wishart rate

    Incoming message from rate.

    Wishart to_sample

    Outgoing message to sample.

    Returns
    Type Description
    Double

    Logarithm of the factor's contribution the EP model evidence.

    Remarks

    The formula for the result is log(sum_(sample,rate) p(sample,rate) factor(sample,shape,rate) / sum_sample p(sample) messageTo(sample)). Adding up these values across all factors and variables gives the log-evidence estimate for EP.

    RateAverageConditional(Wishart, Double, Wishart, Wishart, Wishart)

    EP message to rate.

    Declaration
    public static Wishart RateAverageConditional(Wishart sample, double shape, Wishart rate, Wishart to_rate, Wishart result)
    Parameters
    Type Name Description
    Wishart sample

    Incoming message from sample. Must be a proper distribution. If any element is uniform, the result will be uniform.

    Double shape

    Constant value for shape.

    Wishart rate

    Incoming message from rate.

    Wishart to_rate

    Previous outgoing message to rate.

    Wishart result

    Modified to contain the outgoing message.

    Returns
    Type Description
    Wishart

    result

    Remarks

    The outgoing message is a distribution matching the moments of rate as the random arguments are varied. The formula is proj[p(rate) sum_(sample) p(sample) factor(sample,shape,rate)]/p(rate).

    Exceptions
    Type Condition
    ImproperMessageException

    sample is not a proper distribution.

    SampleAverageConditional(Wishart, Double, Wishart, Wishart, Wishart, Wishart)

    EP message to sample.

    Declaration
    public static Wishart SampleAverageConditional(Wishart sample, double shape, Wishart rate, Wishart to_rate, Wishart to_sample, Wishart result)
    Parameters
    Type Name Description
    Wishart sample

    Incoming message from sample.

    Double shape

    Constant value for shape.

    Wishart rate

    Incoming message from rate. Must be a proper distribution. If any element is uniform, the result will be uniform.

    Wishart to_rate

    Previous outgoing message to rate.

    Wishart to_sample

    Previous outgoing message to sample.

    Wishart result

    Modified to contain the outgoing message.

    Returns
    Type Description
    Wishart

    result

    Remarks

    The outgoing message is a distribution matching the moments of sample as the random arguments are varied. The formula is proj[p(sample) sum_(rate) p(rate) factor(sample,shape,rate)]/p(sample).

    Exceptions
    Type Condition
    ImproperMessageException

    rate is not a proper distribution.

    SampleAverageConditional2(Double, Wishart, Wishart, Wishart)

    Declaration
    public static Wishart SampleAverageConditional2(double shape, Wishart rate, Wishart to_rate, Wishart result)
    Parameters
    Type Name Description
    Double shape
    Wishart rate
    Wishart to_rate
    Wishart result
    Returns
    Type Description
    Wishart
    In This Article
    Back to top Copyright © .NET Foundation. All rights reserved.