Class VectorGaussianOp_Laplace2
Provides outgoing messages for the following factors:
, given random arguments to the function.Inherited Members
Namespace: Microsoft.ML.Probabilistic.Factors
Assembly: Microsoft.ML.Probabilistic.dll
Syntax
[FactorMethod(typeof(VectorGaussian), "Sample", new Type[]{typeof(Vector), typeof(PositiveDefiniteMatrix)})]
[FactorMethod(new string[]{"sample", "mean", "precision"}, typeof(Factor), "VectorGaussian", new Type[]{})]
[Buffers(new string[]{"SampleMean", "SampleVariance", "MeanMean", "MeanVariance", "PrecisionMean", "PrecisionMeanLogDet"})]
[Quality(QualityBand.Preview)]
public static class VectorGaussianOp_Laplace2
Methods
LogAverageFactor(VectorGaussian, VectorGaussian, Wishart, Wishart)
Evidence message for EP.
Declaration
public static double LogAverageFactor(VectorGaussian sample, VectorGaussian mean, Wishart precision, Wishart to_precision)
Parameters
| Type | Name | Description |
|---|---|---|
| VectorGaussian | sample | Incoming message from |
| VectorGaussian | mean | Incoming message from |
| Wishart | precision | Incoming message from |
| Wishart | to_precision | Previous outgoing message to |
Returns
| Type | Description |
|---|---|
| Double | Logarithm of the factor's average value across the given argument distributions. |
Remarks
The formula for the result is log(sum_(sample,mean,precision) p(sample,mean,precision) factor(sample,mean,precision)).
Exceptions
| Type | Condition |
|---|---|
| ImproperMessageException |
|
LogAverageFactor(Vector, VectorGaussian, Wishart, Wishart)
Evidence message for EP.
Declaration
public static double LogAverageFactor(Vector sample, VectorGaussian mean, Wishart precision, Wishart to_precision)
Parameters
| Type | Name | Description |
|---|---|---|
| Vector | sample | Constant value for |
| VectorGaussian | mean | Incoming message from |
| Wishart | precision | Incoming message from |
| Wishart | to_precision | Previous outgoing message to |
Returns
| Type | Description |
|---|---|
| Double | Logarithm of the factor's average value across the given argument distributions. |
Remarks
The formula for the result is log(sum_(mean,precision) p(mean,precision) factor(sample,mean,precision)).
Exceptions
| Type | Condition |
|---|---|
| ImproperMessageException |
|
LogEvidenceRatio(VectorGaussian, VectorGaussian, Wishart, Wishart, VectorGaussian)
Evidence message for EP.
Declaration
public static double LogEvidenceRatio(VectorGaussian sample, VectorGaussian mean, Wishart precision, Wishart to_precision, VectorGaussian to_sample)
Parameters
| Type | Name | Description |
|---|---|---|
| VectorGaussian | sample | Incoming message from |
| VectorGaussian | mean | Incoming message from |
| Wishart | precision | Incoming message from |
| Wishart | to_precision | Previous outgoing message to |
| VectorGaussian | to_sample | Previous outgoing message to |
Returns
| Type | Description |
|---|---|
| Double | Logarithm of the factor's contribution the EP model evidence. |
Remarks
The formula for the result is log(sum_(sample,mean,precision) p(sample,mean,precision) factor(sample,mean,precision) / sum_sample p(sample) messageTo(sample)). Adding up these values across all factors and variables gives the log-evidence estimate for EP.
Exceptions
| Type | Condition |
|---|---|
| ImproperMessageException |
|
LogEvidenceRatio(Vector, VectorGaussian, Wishart, Wishart)
Evidence message for EP.
Declaration
public static double LogEvidenceRatio(Vector sample, VectorGaussian mean, Wishart precision, Wishart to_precision)
Parameters
| Type | Name | Description |
|---|---|---|
| Vector | sample | Constant value for |
| VectorGaussian | mean | Incoming message from |
| Wishart | precision | Incoming message from |
| Wishart | to_precision | Previous outgoing message to |
Returns
| Type | Description |
|---|---|
| Double | Logarithm of the factor's contribution the EP model evidence. |
Remarks
The formula for the result is log(sum_(mean,precision) p(mean,precision) factor(sample,mean,precision)). Adding up these values across all factors and variables gives the log-evidence estimate for EP.
Exceptions
| Type | Condition |
|---|---|
| ImproperMessageException |
|
MeanAverageConditional(VectorGaussian, Wishart, Wishart, VectorGaussian)
EP message to mean.
Declaration
public static VectorGaussian MeanAverageConditional(VectorGaussian sample, Wishart precision, Wishart to_precision, VectorGaussian result)
Parameters
| Type | Name | Description |
|---|---|---|
| VectorGaussian | sample | Incoming message from |
| Wishart | precision | Incoming message from |
| Wishart | to_precision | Previous outgoing message to |
| VectorGaussian | result | Modified to contain the outgoing message. |
Returns
| Type | Description |
|---|---|
| VectorGaussian |
|
Remarks
The outgoing message is a distribution matching the moments of mean as the random arguments are varied. The formula is proj[p(mean) sum_(sample,precision) p(sample,precision) factor(sample,mean,precision)]/p(mean).
Exceptions
| Type | Condition |
|---|---|
| ImproperMessageException |
|
| ImproperMessageException |
|
PrecisionAverageConditional(VectorGaussian, VectorGaussian, Wishart, Wishart, Wishart)
EP message to precision.
Declaration
public static Wishart PrecisionAverageConditional(VectorGaussian sample, VectorGaussian mean, Wishart precision, Wishart to_precision, Wishart result)
Parameters
| Type | Name | Description |
|---|---|---|
| VectorGaussian | sample | Incoming message from |
| VectorGaussian | mean | Incoming message from |
| Wishart | precision | Incoming message from |
| Wishart | to_precision | Previous outgoing message to |
| Wishart | result | Modified to contain the outgoing message. |
Returns
| Type | Description |
|---|---|
| Wishart |
|
Remarks
The outgoing message is a distribution matching the moments of precision as the random arguments are varied. The formula is proj[p(precision) sum_(sample,mean) p(sample,mean) factor(sample,mean,precision)]/p(precision).
Exceptions
| Type | Condition |
|---|---|
| ImproperMessageException |
|
| ImproperMessageException |
|
| ImproperMessageException |
|
SampleAverageConditional(VectorGaussian, Wishart, Wishart, VectorGaussian)
EP message to sample.
Declaration
public static VectorGaussian SampleAverageConditional(VectorGaussian mean, Wishart precision, Wishart to_precision, VectorGaussian result)
Parameters
| Type | Name | Description |
|---|---|---|
| VectorGaussian | mean | Incoming message from |
| Wishart | precision | Incoming message from |
| Wishart | to_precision | Previous outgoing message to |
| VectorGaussian | result | Modified to contain the outgoing message. |
Returns
| Type | Description |
|---|---|
| VectorGaussian |
|
Remarks
The outgoing message is a distribution matching the moments of sample as the random arguments are varied. The formula is proj[p(sample) sum_(mean,precision) p(mean,precision) factor(sample,mean,precision)]/p(sample).
Exceptions
| Type | Condition |
|---|---|
| ImproperMessageException |
|
| ImproperMessageException |
|