Search Results for

    Show / Hide Table of Contents

    Class VectorGaussianOp_Laplace2

    Provides outgoing messages for the following factors:

    • Sample(Vector, PositiveDefiniteMatrix)
    • VectorGaussian(Vector, PositiveDefiniteMatrix)
    , given random arguments to the function.

    Inheritance
    Object
    VectorGaussianOp_Laplace2
    Inherited Members
    Object.Equals(Object)
    Object.Equals(Object, Object)
    Object.GetHashCode()
    Object.GetType()
    Object.MemberwiseClone()
    Object.ReferenceEquals(Object, Object)
    Object.ToString()
    Namespace: Microsoft.ML.Probabilistic.Factors
    Assembly: Microsoft.ML.Probabilistic.dll
    Syntax
    [FactorMethod(typeof(VectorGaussian), "Sample", new Type[]{typeof(Vector), typeof(PositiveDefiniteMatrix)})]
    [FactorMethod(new string[]{"sample", "mean", "precision"}, typeof(Factor), "VectorGaussian", new Type[]{})]
    [Buffers(new string[]{"SampleMean", "SampleVariance", "MeanMean", "MeanVariance", "PrecisionMean", "PrecisionMeanLogDet"})]
    [Quality(QualityBand.Preview)]
    public static class VectorGaussianOp_Laplace2

    Methods

    LogAverageFactor(VectorGaussian, VectorGaussian, Wishart, Wishart)

    Evidence message for EP.

    Declaration
    public static double LogAverageFactor(VectorGaussian sample, VectorGaussian mean, Wishart precision, Wishart to_precision)
    Parameters
    Type Name Description
    VectorGaussian sample

    Incoming message from sample.

    VectorGaussian mean

    Incoming message from mean.

    Wishart precision

    Incoming message from precision. Must be a proper distribution. If any element is uniform, the result will be uniform.

    Wishart to_precision

    Previous outgoing message to precision.

    Returns
    Type Description
    Double

    Logarithm of the factor's average value across the given argument distributions.

    Remarks

    The formula for the result is log(sum_(sample,mean,precision) p(sample,mean,precision) factor(sample,mean,precision)).

    Exceptions
    Type Condition
    ImproperMessageException

    precision is not a proper distribution.

    LogAverageFactor(Vector, VectorGaussian, Wishart, Wishart)

    Evidence message for EP.

    Declaration
    public static double LogAverageFactor(Vector sample, VectorGaussian mean, Wishart precision, Wishart to_precision)
    Parameters
    Type Name Description
    Vector sample

    Constant value for sample.

    VectorGaussian mean

    Incoming message from mean.

    Wishart precision

    Incoming message from precision. Must be a proper distribution. If any element is uniform, the result will be uniform.

    Wishart to_precision

    Previous outgoing message to precision.

    Returns
    Type Description
    Double

    Logarithm of the factor's average value across the given argument distributions.

    Remarks

    The formula for the result is log(sum_(mean,precision) p(mean,precision) factor(sample,mean,precision)).

    Exceptions
    Type Condition
    ImproperMessageException

    precision is not a proper distribution.

    LogEvidenceRatio(VectorGaussian, VectorGaussian, Wishart, Wishart, VectorGaussian)

    Evidence message for EP.

    Declaration
    public static double LogEvidenceRatio(VectorGaussian sample, VectorGaussian mean, Wishart precision, Wishart to_precision, VectorGaussian to_sample)
    Parameters
    Type Name Description
    VectorGaussian sample

    Incoming message from sample.

    VectorGaussian mean

    Incoming message from mean.

    Wishart precision

    Incoming message from precision. Must be a proper distribution. If any element is uniform, the result will be uniform.

    Wishart to_precision

    Previous outgoing message to precision.

    VectorGaussian to_sample

    Previous outgoing message to sample.

    Returns
    Type Description
    Double

    Logarithm of the factor's contribution the EP model evidence.

    Remarks

    The formula for the result is log(sum_(sample,mean,precision) p(sample,mean,precision) factor(sample,mean,precision) / sum_sample p(sample) messageTo(sample)). Adding up these values across all factors and variables gives the log-evidence estimate for EP.

    Exceptions
    Type Condition
    ImproperMessageException

    precision is not a proper distribution.

    LogEvidenceRatio(Vector, VectorGaussian, Wishart, Wishart)

    Evidence message for EP.

    Declaration
    public static double LogEvidenceRatio(Vector sample, VectorGaussian mean, Wishart precision, Wishart to_precision)
    Parameters
    Type Name Description
    Vector sample

    Constant value for sample.

    VectorGaussian mean

    Incoming message from mean.

    Wishart precision

    Incoming message from precision. Must be a proper distribution. If any element is uniform, the result will be uniform.

    Wishart to_precision

    Previous outgoing message to precision.

    Returns
    Type Description
    Double

    Logarithm of the factor's contribution the EP model evidence.

    Remarks

    The formula for the result is log(sum_(mean,precision) p(mean,precision) factor(sample,mean,precision)). Adding up these values across all factors and variables gives the log-evidence estimate for EP.

    Exceptions
    Type Condition
    ImproperMessageException

    precision is not a proper distribution.

    MeanAverageConditional(VectorGaussian, Wishart, Wishart, VectorGaussian)

    EP message to mean.

    Declaration
    public static VectorGaussian MeanAverageConditional(VectorGaussian sample, Wishart precision, Wishart to_precision, VectorGaussian result)
    Parameters
    Type Name Description
    VectorGaussian sample

    Incoming message from sample. Must be a proper distribution. If any element is uniform, the result will be uniform.

    Wishart precision

    Incoming message from precision. Must be a proper distribution. If any element is uniform, the result will be uniform.

    Wishart to_precision

    Previous outgoing message to precision.

    VectorGaussian result

    Modified to contain the outgoing message.

    Returns
    Type Description
    VectorGaussian

    result

    Remarks

    The outgoing message is a distribution matching the moments of mean as the random arguments are varied. The formula is proj[p(mean) sum_(sample,precision) p(sample,precision) factor(sample,mean,precision)]/p(mean).

    Exceptions
    Type Condition
    ImproperMessageException

    sample is not a proper distribution.

    ImproperMessageException

    precision is not a proper distribution.

    PrecisionAverageConditional(VectorGaussian, VectorGaussian, Wishart, Wishart, Wishart)

    EP message to precision.

    Declaration
    public static Wishart PrecisionAverageConditional(VectorGaussian sample, VectorGaussian mean, Wishart precision, Wishart to_precision, Wishart result)
    Parameters
    Type Name Description
    VectorGaussian sample

    Incoming message from sample. Must be a proper distribution. If any element is uniform, the result will be uniform.

    VectorGaussian mean

    Incoming message from mean. Must be a proper distribution. If any element is uniform, the result will be uniform.

    Wishart precision

    Incoming message from precision. Must be a proper distribution. If any element is uniform, the result will be uniform.

    Wishart to_precision

    Previous outgoing message to precision.

    Wishart result

    Modified to contain the outgoing message.

    Returns
    Type Description
    Wishart

    result

    Remarks

    The outgoing message is a distribution matching the moments of precision as the random arguments are varied. The formula is proj[p(precision) sum_(sample,mean) p(sample,mean) factor(sample,mean,precision)]/p(precision).

    Exceptions
    Type Condition
    ImproperMessageException

    sample is not a proper distribution.

    ImproperMessageException

    mean is not a proper distribution.

    ImproperMessageException

    precision is not a proper distribution.

    SampleAverageConditional(VectorGaussian, Wishart, Wishart, VectorGaussian)

    EP message to sample.

    Declaration
    public static VectorGaussian SampleAverageConditional(VectorGaussian mean, Wishart precision, Wishart to_precision, VectorGaussian result)
    Parameters
    Type Name Description
    VectorGaussian mean

    Incoming message from mean. Must be a proper distribution. If any element is uniform, the result will be uniform.

    Wishart precision

    Incoming message from precision. Must be a proper distribution. If any element is uniform, the result will be uniform.

    Wishart to_precision

    Previous outgoing message to precision.

    VectorGaussian result

    Modified to contain the outgoing message.

    Returns
    Type Description
    VectorGaussian

    result

    Remarks

    The outgoing message is a distribution matching the moments of sample as the random arguments are varied. The formula is proj[p(sample) sum_(mean,precision) p(mean,precision) factor(sample,mean,precision)]/p(sample).

    Exceptions
    Type Condition
    ImproperMessageException

    mean is not a proper distribution.

    ImproperMessageException

    precision is not a proper distribution.

    In This Article
    Back to top Copyright © .NET Foundation. All rights reserved.