Search Results for

    Show / Hide Table of Contents

    Class VectorGaussianOp

    Provides outgoing messages for the following factors:

    • Sample(Vector, PositiveDefiniteMatrix)
    • VectorGaussian(Vector, PositiveDefiniteMatrix)
    , given random arguments to the function.

    Inheritance
    Object
    VectorGaussianOp
    Inherited Members
    Object.Equals(Object)
    Object.Equals(Object, Object)
    Object.GetHashCode()
    Object.GetType()
    Object.MemberwiseClone()
    Object.ReferenceEquals(Object, Object)
    Object.ToString()
    Namespace: Microsoft.ML.Probabilistic.Factors
    Assembly: Microsoft.ML.Probabilistic.dll
    Syntax
    [FactorMethod(typeof(VectorGaussian), "Sample", new Type[]{typeof(Vector), typeof(PositiveDefiniteMatrix)})]
    [FactorMethod(new string[]{"sample", "mean", "precision"}, typeof(Factor), "VectorGaussian", new Type[]{})]
    [Buffers(new string[]{"SampleMean", "SampleVariance", "MeanMean", "MeanVariance", "PrecisionMean", "PrecisionMeanLogDet"})]
    [Quality(QualityBand.Stable)]
    public static class VectorGaussianOp

    Methods

    AverageLogFactor(VectorGaussian, Vector, PositiveDefiniteMatrix, VectorGaussian, Vector, PositiveDefiniteMatrix, Wishart, PositiveDefiniteMatrix, Double)

    Evidence message for VMP.

    Declaration
    public static double AverageLogFactor(VectorGaussian sample, Vector SampleMean, PositiveDefiniteMatrix SampleVariance, VectorGaussian mean, Vector MeanMean, PositiveDefiniteMatrix MeanVariance, Wishart precision, PositiveDefiniteMatrix precisionMean, double precisionMeanLogDet)
    Parameters
    Type Name Description
    VectorGaussian sample

    Incoming message from sample. Must be a proper distribution. If any element is uniform, the result will be uniform.

    Vector SampleMean

    Buffer SampleMean.

    PositiveDefiniteMatrix SampleVariance

    Buffer SampleVariance.

    VectorGaussian mean

    Incoming message from mean. Must be a proper distribution. If any element is uniform, the result will be uniform.

    Vector MeanMean

    Buffer MeanMean.

    PositiveDefiniteMatrix MeanVariance

    Buffer MeanVariance.

    Wishart precision

    Incoming message from precision. Must be a proper distribution. If any element is uniform, the result will be uniform.

    PositiveDefiniteMatrix precisionMean

    Buffer precisionMean.

    Double precisionMeanLogDet

    Buffer precisionMeanLogDet.

    Returns
    Type Description
    Double

    Average of the factor's log-value across the given argument distributions.

    Remarks

    The formula for the result is sum_(sample,mean,precision) p(sample,mean,precision) log(factor(sample,mean,precision)). Adding up these values across all factors and variables gives the log-evidence estimate for VMP.

    Exceptions
    Type Condition
    ImproperMessageException

    sample is not a proper distribution.

    ImproperMessageException

    mean is not a proper distribution.

    ImproperMessageException

    precision is not a proper distribution.

    AverageLogFactor(VectorGaussian, Vector, PositiveDefiniteMatrix, VectorGaussian, Vector, PositiveDefiniteMatrix, PositiveDefiniteMatrix)

    Evidence message for VMP.

    Declaration
    public static double AverageLogFactor(VectorGaussian sample, Vector SampleMean, PositiveDefiniteMatrix SampleVariance, VectorGaussian mean, Vector MeanMean, PositiveDefiniteMatrix MeanVariance, PositiveDefiniteMatrix precision)
    Parameters
    Type Name Description
    VectorGaussian sample

    Incoming message from sample. Must be a proper distribution. If any element is uniform, the result will be uniform.

    Vector SampleMean

    Buffer SampleMean.

    PositiveDefiniteMatrix SampleVariance

    Buffer SampleVariance.

    VectorGaussian mean

    Incoming message from mean. Must be a proper distribution. If any element is uniform, the result will be uniform.

    Vector MeanMean

    Buffer MeanMean.

    PositiveDefiniteMatrix MeanVariance

    Buffer MeanVariance.

    PositiveDefiniteMatrix precision

    Constant value for precision.

    Returns
    Type Description
    Double

    Average of the factor's log-value across the given argument distributions.

    Remarks

    The formula for the result is sum_(sample,mean) p(sample,mean) log(factor(sample,mean,precision)). Adding up these values across all factors and variables gives the log-evidence estimate for VMP.

    Exceptions
    Type Condition
    ImproperMessageException

    sample is not a proper distribution.

    ImproperMessageException

    mean is not a proper distribution.

    AverageLogFactor(VectorGaussian, Vector, PositiveDefiniteMatrix, Vector, Wishart, PositiveDefiniteMatrix, Double)

    Evidence message for VMP.

    Declaration
    public static double AverageLogFactor(VectorGaussian sample, Vector SampleMean, PositiveDefiniteMatrix SampleVariance, Vector mean, Wishart precision, PositiveDefiniteMatrix precisionMean, double precisionMeanLogDet)
    Parameters
    Type Name Description
    VectorGaussian sample

    Incoming message from sample. Must be a proper distribution. If any element is uniform, the result will be uniform.

    Vector SampleMean

    Buffer SampleMean.

    PositiveDefiniteMatrix SampleVariance

    Buffer SampleVariance.

    Vector mean

    Constant value for mean.

    Wishart precision

    Incoming message from precision. Must be a proper distribution. If any element is uniform, the result will be uniform.

    PositiveDefiniteMatrix precisionMean

    Buffer precisionMean.

    Double precisionMeanLogDet

    Buffer precisionMeanLogDet.

    Returns
    Type Description
    Double

    Average of the factor's log-value across the given argument distributions.

    Remarks

    The formula for the result is sum_(sample,precision) p(sample,precision) log(factor(sample,mean,precision)). Adding up these values across all factors and variables gives the log-evidence estimate for VMP.

    Exceptions
    Type Condition
    ImproperMessageException

    sample is not a proper distribution.

    ImproperMessageException

    precision is not a proper distribution.

    AverageLogFactor(VectorGaussian, Vector, PositiveDefiniteMatrix, Vector, PositiveDefiniteMatrix)

    Evidence message for VMP.

    Declaration
    public static double AverageLogFactor(VectorGaussian sample, Vector SampleMean, PositiveDefiniteMatrix SampleVariance, Vector mean, PositiveDefiniteMatrix precision)
    Parameters
    Type Name Description
    VectorGaussian sample

    Incoming message from sample. Must be a proper distribution. If any element is uniform, the result will be uniform.

    Vector SampleMean

    Buffer SampleMean.

    PositiveDefiniteMatrix SampleVariance

    Buffer SampleVariance.

    Vector mean

    Constant value for mean.

    PositiveDefiniteMatrix precision

    Constant value for precision.

    Returns
    Type Description
    Double

    Average of the factor's log-value across the given argument distributions.

    Remarks

    The formula for the result is sum_(sample) p(sample) log(factor(sample,mean,precision)). Adding up these values across all factors and variables gives the log-evidence estimate for VMP.

    Exceptions
    Type Condition
    ImproperMessageException

    sample is not a proper distribution.

    AverageLogFactor(Vector, VectorGaussian, Vector, PositiveDefiniteMatrix, Wishart, PositiveDefiniteMatrix, Double)

    Evidence message for VMP.

    Declaration
    public static double AverageLogFactor(Vector sample, VectorGaussian mean, Vector MeanMean, PositiveDefiniteMatrix MeanVariance, Wishart precision, PositiveDefiniteMatrix precisionMean, double precisionMeanLogDet)
    Parameters
    Type Name Description
    Vector sample

    Constant value for sample.

    VectorGaussian mean

    Incoming message from mean. Must be a proper distribution. If any element is uniform, the result will be uniform.

    Vector MeanMean

    Buffer MeanMean.

    PositiveDefiniteMatrix MeanVariance

    Buffer MeanVariance.

    Wishart precision

    Incoming message from precision. Must be a proper distribution. If any element is uniform, the result will be uniform.

    PositiveDefiniteMatrix precisionMean

    Buffer precisionMean.

    Double precisionMeanLogDet

    Buffer precisionMeanLogDet.

    Returns
    Type Description
    Double

    Average of the factor's log-value across the given argument distributions.

    Remarks

    The formula for the result is sum_(mean,precision) p(mean,precision) log(factor(sample,mean,precision)). Adding up these values across all factors and variables gives the log-evidence estimate for VMP.

    Exceptions
    Type Condition
    ImproperMessageException

    mean is not a proper distribution.

    ImproperMessageException

    precision is not a proper distribution.

    AverageLogFactor(Vector, VectorGaussian, Vector, PositiveDefiniteMatrix, PositiveDefiniteMatrix)

    Evidence message for VMP.

    Declaration
    public static double AverageLogFactor(Vector sample, VectorGaussian mean, Vector MeanMean, PositiveDefiniteMatrix MeanVariance, PositiveDefiniteMatrix precision)
    Parameters
    Type Name Description
    Vector sample

    Constant value for sample.

    VectorGaussian mean

    Incoming message from mean. Must be a proper distribution. If any element is uniform, the result will be uniform.

    Vector MeanMean

    Buffer MeanMean.

    PositiveDefiniteMatrix MeanVariance

    Buffer MeanVariance.

    PositiveDefiniteMatrix precision

    Constant value for precision.

    Returns
    Type Description
    Double

    Average of the factor's log-value across the given argument distributions.

    Remarks

    The formula for the result is sum_(mean) p(mean) log(factor(sample,mean,precision)). Adding up these values across all factors and variables gives the log-evidence estimate for VMP.

    Exceptions
    Type Condition
    ImproperMessageException

    mean is not a proper distribution.

    AverageLogFactor(Vector, Vector, Wishart, PositiveDefiniteMatrix, Double)

    Evidence message for VMP.

    Declaration
    public static double AverageLogFactor(Vector sample, Vector mean, Wishart precision, PositiveDefiniteMatrix precisionMean, double precisionMeanLogDet)
    Parameters
    Type Name Description
    Vector sample

    Constant value for sample.

    Vector mean

    Constant value for mean.

    Wishart precision

    Incoming message from precision. Must be a proper distribution. If any element is uniform, the result will be uniform.

    PositiveDefiniteMatrix precisionMean

    Buffer precisionMean.

    Double precisionMeanLogDet

    Buffer precisionMeanLogDet.

    Returns
    Type Description
    Double

    Average of the factor's log-value across the given argument distributions.

    Remarks

    The formula for the result is sum_(precision) p(precision) log(factor(sample,mean,precision)). Adding up these values across all factors and variables gives the log-evidence estimate for VMP.

    Exceptions
    Type Condition
    ImproperMessageException

    precision is not a proper distribution.

    AverageLogFactor(Vector, Vector, PositiveDefiniteMatrix)

    Evidence message for VMP.

    Declaration
    public static double AverageLogFactor(Vector sample, Vector mean, PositiveDefiniteMatrix precision)
    Parameters
    Type Name Description
    Vector sample

    Constant value for sample.

    Vector mean

    Constant value for mean.

    PositiveDefiniteMatrix precision

    Constant value for precision.

    Returns
    Type Description
    Double

    Average of the factor's log-value across the given argument distributions.

    Remarks

    The formula for the result is log(factor(sample,mean,precision)). Adding up these values across all factors and variables gives the log-evidence estimate for VMP.

    LogAverageFactor(Vector, PositiveDefiniteMatrix, Vector, PositiveDefiniteMatrix, PositiveDefiniteMatrix)

    Evidence message for EP.

    Declaration
    public static double LogAverageFactor(Vector SampleMean, PositiveDefiniteMatrix SampleVariance, Vector MeanMean, PositiveDefiniteMatrix MeanVariance, PositiveDefiniteMatrix Precision)
    Parameters
    Type Name Description
    Vector SampleMean

    Buffer SampleMean.

    PositiveDefiniteMatrix SampleVariance

    Buffer SampleVariance.

    Vector MeanMean

    Buffer MeanMean.

    PositiveDefiniteMatrix MeanVariance

    Buffer MeanVariance.

    PositiveDefiniteMatrix Precision

    Constant value for precision.

    Returns
    Type Description
    Double

    Logarithm of the factor's average value across the given argument distributions.

    Remarks

    The formula for the result is log(factor(sample,mean,precision)).

    LogAverageFactor(Vector, Vector, PositiveDefiniteMatrix)

    Evidence message for EP.

    Declaration
    public static double LogAverageFactor(Vector sample, Vector mean, PositiveDefiniteMatrix precision)
    Parameters
    Type Name Description
    Vector sample

    Constant value for sample.

    Vector mean

    Constant value for mean.

    PositiveDefiniteMatrix precision

    Constant value for precision.

    Returns
    Type Description
    Double

    Logarithm of the factor's average value across the given argument distributions.

    Remarks

    The formula for the result is log(factor(sample,mean,precision)).

    LogAverageFactor(Vector, Vector, PositiveDefiniteMatrix, PositiveDefiniteMatrix)

    Evidence message for EP.

    Declaration
    public static double LogAverageFactor(Vector Sample, Vector MeanMean, PositiveDefiniteMatrix MeanVariance, PositiveDefiniteMatrix Precision)
    Parameters
    Type Name Description
    Vector Sample

    Constant value for sample.

    Vector MeanMean

    Buffer MeanMean.

    PositiveDefiniteMatrix MeanVariance

    Buffer MeanVariance.

    PositiveDefiniteMatrix Precision

    Constant value for precision.

    Returns
    Type Description
    Double

    Logarithm of the factor's average value across the given argument distributions.

    Remarks

    The formula for the result is log(factor(sample,mean,precision)).

    LogEvidenceRatio(VectorGaussian, VectorGaussian, PositiveDefiniteMatrix)

    Evidence message for EP.

    Declaration
    public static double LogEvidenceRatio(VectorGaussian sample, VectorGaussian mean, PositiveDefiniteMatrix precision)
    Parameters
    Type Name Description
    VectorGaussian sample

    Incoming message from sample. Must be a proper distribution. If any element is uniform, the result will be uniform.

    VectorGaussian mean

    Incoming message from mean. Must be a proper distribution. If any element is uniform, the result will be uniform.

    PositiveDefiniteMatrix precision

    Constant value for precision.

    Returns
    Type Description
    Double

    Logarithm of the factor's contribution the EP model evidence.

    Remarks

    The formula for the result is log(sum_(sample,mean) p(sample,mean) factor(sample,mean,precision) / sum_sample p(sample) messageTo(sample)). Adding up these values across all factors and variables gives the log-evidence estimate for EP.

    Exceptions
    Type Condition
    ImproperMessageException

    sample is not a proper distribution.

    ImproperMessageException

    mean is not a proper distribution.

    LogEvidenceRatio(VectorGaussian, Vector, PositiveDefiniteMatrix)

    Evidence message for EP.

    Declaration
    public static double LogEvidenceRatio(VectorGaussian sample, Vector mean, PositiveDefiniteMatrix precision)
    Parameters
    Type Name Description
    VectorGaussian sample

    Incoming message from sample.

    Vector mean

    Constant value for mean.

    PositiveDefiniteMatrix precision

    Constant value for precision.

    Returns
    Type Description
    Double

    Logarithm of the factor's contribution the EP model evidence.

    Remarks

    The formula for the result is log(sum_(sample) p(sample) factor(sample,mean,precision) / sum_sample p(sample) messageTo(sample)). Adding up these values across all factors and variables gives the log-evidence estimate for EP.

    LogEvidenceRatio(Vector, VectorGaussian, Vector, PositiveDefiniteMatrix, PositiveDefiniteMatrix)

    Evidence message for EP.

    Declaration
    public static double LogEvidenceRatio(Vector sample, VectorGaussian mean, Vector MeanMean, PositiveDefiniteMatrix MeanVariance, PositiveDefiniteMatrix precision)
    Parameters
    Type Name Description
    Vector sample

    Constant value for sample.

    VectorGaussian mean

    Incoming message from mean.

    Vector MeanMean

    Buffer MeanMean.

    PositiveDefiniteMatrix MeanVariance

    Buffer MeanVariance.

    PositiveDefiniteMatrix precision

    Constant value for precision.

    Returns
    Type Description
    Double

    Logarithm of the factor's contribution the EP model evidence.

    Remarks

    The formula for the result is log(sum_(mean) p(mean) factor(sample,mean,precision)). Adding up these values across all factors and variables gives the log-evidence estimate for EP.

    LogEvidenceRatio(Vector, Vector, PositiveDefiniteMatrix)

    Evidence message for EP.

    Declaration
    public static double LogEvidenceRatio(Vector sample, Vector mean, PositiveDefiniteMatrix precision)
    Parameters
    Type Name Description
    Vector sample

    Constant value for sample.

    Vector mean

    Constant value for mean.

    PositiveDefiniteMatrix precision

    Constant value for precision.

    Returns
    Type Description
    Double

    Logarithm of the factor's contribution the EP model evidence.

    Remarks

    The formula for the result is log(factor(sample,mean,precision)). Adding up these values across all factors and variables gives the log-evidence estimate for EP.

    MeanAverageConditional(VectorGaussian, PositiveDefiniteMatrix, VectorGaussian)

    EP message to mean.

    Declaration
    public static VectorGaussian MeanAverageConditional(VectorGaussian Sample, PositiveDefiniteMatrix Precision, VectorGaussian result)
    Parameters
    Type Name Description
    VectorGaussian Sample

    Incoming message from sample. Must be a proper distribution. If any element is uniform, the result will be uniform.

    PositiveDefiniteMatrix Precision

    Constant value for precision.

    VectorGaussian result

    Modified to contain the outgoing message.

    Returns
    Type Description
    VectorGaussian

    result

    Remarks

    The outgoing message is a distribution matching the moments of mean as the random arguments are varied. The formula is proj[p(mean) sum_(sample) p(sample) factor(sample,mean,precision)]/p(mean).

    Exceptions
    Type Condition
    ImproperMessageException

    Sample is not a proper distribution.

    MeanAverageConditional(Vector, PositiveDefiniteMatrix, VectorGaussian)

    EP message to mean.

    Declaration
    public static VectorGaussian MeanAverageConditional(Vector Sample, PositiveDefiniteMatrix Precision, VectorGaussian result)
    Parameters
    Type Name Description
    Vector Sample

    Constant value for sample.

    PositiveDefiniteMatrix Precision

    Constant value for precision.

    VectorGaussian result

    Modified to contain the outgoing message.

    Returns
    Type Description
    VectorGaussian

    result

    Remarks

    The outgoing message is the factor viewed as a function of mean conditioned on the given values.

    MeanAverageLogarithm(VectorGaussian, Vector, Wishart, PositiveDefiniteMatrix, VectorGaussian)

    VMP message to mean.

    Declaration
    public static VectorGaussian MeanAverageLogarithm(VectorGaussian Sample, Vector SampleMean, Wishart Precision, PositiveDefiniteMatrix PrecisionMean, VectorGaussian result)
    Parameters
    Type Name Description
    VectorGaussian Sample

    Incoming message from sample. Must be a proper distribution. If any element is uniform, the result will be uniform.

    Vector SampleMean

    Buffer SampleMean.

    Wishart Precision

    Incoming message from precision. Must be a proper distribution. If any element is uniform, the result will be uniform.

    PositiveDefiniteMatrix PrecisionMean

    Buffer PrecisionMean.

    VectorGaussian result

    Modified to contain the outgoing message.

    Returns
    Type Description
    VectorGaussian

    result

    Remarks

    The outgoing message is the exponential of the average log-factor value, where the average is over all arguments except mean. The formula is exp(sum_(sample,precision) p(sample,precision) log(factor(sample,mean,precision))).

    Exceptions
    Type Condition
    ImproperMessageException

    Sample is not a proper distribution.

    ImproperMessageException

    Precision is not a proper distribution.

    MeanAverageLogarithm(VectorGaussian, Vector, PositiveDefiniteMatrix, VectorGaussian)

    VMP message to mean.

    Declaration
    public static VectorGaussian MeanAverageLogarithm(VectorGaussian Sample, Vector SampleMean, PositiveDefiniteMatrix Precision, VectorGaussian result)
    Parameters
    Type Name Description
    VectorGaussian Sample

    Incoming message from sample. Must be a proper distribution. If any element is uniform, the result will be uniform.

    Vector SampleMean

    Buffer SampleMean.

    PositiveDefiniteMatrix Precision

    Constant value for precision.

    VectorGaussian result

    Modified to contain the outgoing message.

    Returns
    Type Description
    VectorGaussian

    result

    Remarks

    The outgoing message is the exponential of the average log-factor value, where the average is over all arguments except mean. The formula is exp(sum_(sample) p(sample) log(factor(sample,mean,precision))).

    Exceptions
    Type Condition
    ImproperMessageException

    Sample is not a proper distribution.

    MeanAverageLogarithm(Vector, Wishart, PositiveDefiniteMatrix, VectorGaussian)

    VMP message to mean.

    Declaration
    public static VectorGaussian MeanAverageLogarithm(Vector Sample, Wishart Precision, PositiveDefiniteMatrix PrecisionMean, VectorGaussian result)
    Parameters
    Type Name Description
    Vector Sample

    Constant value for sample.

    Wishart Precision

    Incoming message from precision. Must be a proper distribution. If any element is uniform, the result will be uniform.

    PositiveDefiniteMatrix PrecisionMean

    Buffer PrecisionMean.

    VectorGaussian result

    Modified to contain the outgoing message.

    Returns
    Type Description
    VectorGaussian

    result

    Remarks

    The outgoing message is the exponential of the average log-factor value, where the average is over all arguments except mean. The formula is exp(sum_(precision) p(precision) log(factor(sample,mean,precision))).

    Exceptions
    Type Condition
    ImproperMessageException

    Precision is not a proper distribution.

    MeanAverageLogarithm(Vector, PositiveDefiniteMatrix, VectorGaussian)

    VMP message to mean.

    Declaration
    public static VectorGaussian MeanAverageLogarithm(Vector Sample, PositiveDefiniteMatrix Precision, VectorGaussian result)
    Parameters
    Type Name Description
    Vector Sample

    Constant value for sample.

    PositiveDefiniteMatrix Precision

    Constant value for precision.

    VectorGaussian result

    Modified to contain the outgoing message.

    Returns
    Type Description
    VectorGaussian

    result

    Remarks

    The outgoing message is the factor viewed as a function of mean conditioned on the given values.

    MeanConditional(Vector, PositiveDefiniteMatrix, VectorGaussian)

    Gibbs message to mean.

    Declaration
    public static VectorGaussian MeanConditional(Vector Sample, PositiveDefiniteMatrix Precision, VectorGaussian result)
    Parameters
    Type Name Description
    Vector Sample

    Constant value for sample.

    PositiveDefiniteMatrix Precision

    Constant value for precision.

    VectorGaussian result

    Modified to contain the outgoing message.

    Returns
    Type Description
    VectorGaussian

    result

    Remarks

    The outgoing message is the factor viewed as a function of mean conditioned on the given values.

    MeanMean(VectorGaussian, PositiveDefiniteMatrix, Vector)

    Update the buffer MeanMean.

    Declaration
    public static Vector MeanMean(VectorGaussian Mean, PositiveDefiniteMatrix MeanVariance, Vector result)
    Parameters
    Type Name Description
    VectorGaussian Mean

    Incoming message from mean. Must be a proper distribution. If any element is uniform, the result will be uniform.

    PositiveDefiniteMatrix MeanVariance

    Buffer MeanVariance.

    Vector result

    Modified to contain the outgoing message.

    Returns
    Type Description
    Vector

    result

    Remarks

    Exceptions
    Type Condition
    ImproperMessageException

    Mean is not a proper distribution.

    MeanMeanInit(VectorGaussian)

    Initialize the buffer MeanMean.

    Declaration
    public static Vector MeanMeanInit(VectorGaussian Mean)
    Parameters
    Type Name Description
    VectorGaussian Mean

    Incoming message from mean.

    Returns
    Type Description
    Vector

    Initial value of buffer MeanMean.

    Remarks

    MeanVariance(VectorGaussian, PositiveDefiniteMatrix)

    Update the buffer MeanVariance.

    Declaration
    public static PositiveDefiniteMatrix MeanVariance(VectorGaussian Mean, PositiveDefiniteMatrix result)
    Parameters
    Type Name Description
    VectorGaussian Mean

    Incoming message from mean. Must be a proper distribution. If any element is uniform, the result will be uniform.

    PositiveDefiniteMatrix result

    Modified to contain the outgoing message.

    Returns
    Type Description
    PositiveDefiniteMatrix

    result

    Remarks

    Exceptions
    Type Condition
    ImproperMessageException

    Mean is not a proper distribution.

    MeanVarianceInit(VectorGaussian)

    Initialize the buffer MeanVariance.

    Declaration
    public static PositiveDefiniteMatrix MeanVarianceInit(VectorGaussian Mean)
    Parameters
    Type Name Description
    VectorGaussian Mean

    Incoming message from mean.

    Returns
    Type Description
    PositiveDefiniteMatrix

    Initial value of buffer MeanVariance.

    Remarks

    PrecisionAverageConditional(Vector, Vector, Wishart)

    EP message to precision.

    Declaration
    public static Wishart PrecisionAverageConditional(Vector Sample, Vector Mean, Wishart result)
    Parameters
    Type Name Description
    Vector Sample

    Constant value for sample.

    Vector Mean

    Constant value for mean.

    Wishart result

    Modified to contain the outgoing message.

    Returns
    Type Description
    Wishart

    result

    Remarks

    The outgoing message is the factor viewed as a function of precision conditioned on the given values.

    PrecisionAverageLogarithm(VectorGaussian, Vector, PositiveDefiniteMatrix, VectorGaussian, Vector, PositiveDefiniteMatrix, Wishart)

    VMP message to precision.

    Declaration
    public static Wishart PrecisionAverageLogarithm(VectorGaussian Sample, Vector SampleMean, PositiveDefiniteMatrix SampleVariance, VectorGaussian Mean, Vector MeanMean, PositiveDefiniteMatrix MeanVariance, Wishart result)
    Parameters
    Type Name Description
    VectorGaussian Sample

    Incoming message from sample. Must be a proper distribution. If any element is uniform, the result will be uniform.

    Vector SampleMean

    Buffer SampleMean.

    PositiveDefiniteMatrix SampleVariance

    Buffer SampleVariance.

    VectorGaussian Mean

    Incoming message from mean. Must be a proper distribution. If any element is uniform, the result will be uniform.

    Vector MeanMean

    Buffer MeanMean.

    PositiveDefiniteMatrix MeanVariance

    Buffer MeanVariance.

    Wishart result

    Modified to contain the outgoing message.

    Returns
    Type Description
    Wishart

    result

    Remarks

    The outgoing message is the exponential of the average log-factor value, where the average is over all arguments except precision. The formula is exp(sum_(sample,mean) p(sample,mean) log(factor(sample,mean,precision))).

    Exceptions
    Type Condition
    ImproperMessageException

    Sample is not a proper distribution.

    ImproperMessageException

    Mean is not a proper distribution.

    PrecisionAverageLogarithm(VectorGaussian, Vector, PositiveDefiniteMatrix, Vector, Wishart)

    VMP message to precision.

    Declaration
    public static Wishart PrecisionAverageLogarithm(VectorGaussian Sample, Vector SampleMean, PositiveDefiniteMatrix SampleVariance, Vector Mean, Wishart result)
    Parameters
    Type Name Description
    VectorGaussian Sample

    Incoming message from sample. Must be a proper distribution. If any element is uniform, the result will be uniform.

    Vector SampleMean

    Buffer SampleMean.

    PositiveDefiniteMatrix SampleVariance

    Buffer SampleVariance.

    Vector Mean

    Constant value for mean.

    Wishart result

    Modified to contain the outgoing message.

    Returns
    Type Description
    Wishart

    result

    Remarks

    The outgoing message is the exponential of the average log-factor value, where the average is over all arguments except precision. The formula is exp(sum_(sample) p(sample) log(factor(sample,mean,precision))).

    Exceptions
    Type Condition
    ImproperMessageException

    Sample is not a proper distribution.

    PrecisionAverageLogarithm(Vector, VectorGaussian, Vector, PositiveDefiniteMatrix, Wishart)

    VMP message to precision.

    Declaration
    public static Wishart PrecisionAverageLogarithm(Vector Sample, VectorGaussian Mean, Vector MeanMean, PositiveDefiniteMatrix MeanVariance, Wishart result)
    Parameters
    Type Name Description
    Vector Sample

    Constant value for sample.

    VectorGaussian Mean

    Incoming message from mean. Must be a proper distribution. If any element is uniform, the result will be uniform.

    Vector MeanMean

    Buffer MeanMean.

    PositiveDefiniteMatrix MeanVariance

    Buffer MeanVariance.

    Wishart result

    Modified to contain the outgoing message.

    Returns
    Type Description
    Wishart

    result

    Remarks

    The outgoing message is the exponential of the average log-factor value, where the average is over all arguments except precision. The formula is exp(sum_(mean) p(mean) log(factor(sample,mean,precision))).

    Exceptions
    Type Condition
    ImproperMessageException

    Mean is not a proper distribution.

    PrecisionAverageLogarithm(Vector, Vector, Wishart)

    VMP message to precision.

    Declaration
    public static Wishart PrecisionAverageLogarithm(Vector Sample, Vector Mean, Wishart result)
    Parameters
    Type Name Description
    Vector Sample

    Constant value for sample.

    Vector Mean

    Constant value for mean.

    Wishart result

    Modified to contain the outgoing message.

    Returns
    Type Description
    Wishart

    result

    Remarks

    The outgoing message is the factor viewed as a function of precision conditioned on the given values.

    PrecisionConditional(Vector, Vector, Wishart)

    Gibbs message to precision.

    Declaration
    public static Wishart PrecisionConditional(Vector Sample, Vector Mean, Wishart result)
    Parameters
    Type Name Description
    Vector Sample

    Constant value for sample.

    Vector Mean

    Constant value for mean.

    Wishart result

    Modified to contain the outgoing message.

    Returns
    Type Description
    Wishart

    result

    Remarks

    The outgoing message is the factor viewed as a function of precision conditioned on the given values.

    PrecisionConditional(Vector, Vector, Wishart, Vector)

    Gibbs message to precision.

    Declaration
    public static Wishart PrecisionConditional(Vector Sample, Vector Mean, Wishart result, Vector diff)
    Parameters
    Type Name Description
    Vector Sample

    Constant value for sample.

    Vector Mean

    Constant value for mean.

    Wishart result

    Modified to contain the outgoing message.

    Vector diff
    Returns
    Type Description
    Wishart

    result

    Remarks

    The outgoing message is the factor viewed as a function of precision conditioned on the given values.

    PrecisionMean(Wishart, PositiveDefiniteMatrix)

    Update the buffer PrecisionMean.

    Declaration
    public static PositiveDefiniteMatrix PrecisionMean(Wishart Precision, PositiveDefiniteMatrix result)
    Parameters
    Type Name Description
    Wishart Precision

    Incoming message from precision. Must be a proper distribution. If any element is uniform, the result will be uniform.

    PositiveDefiniteMatrix result

    Modified to contain the outgoing message.

    Returns
    Type Description
    PositiveDefiniteMatrix

    result

    Remarks

    Exceptions
    Type Condition
    ImproperMessageException

    Precision is not a proper distribution.

    PrecisionMeanInit(Wishart)

    Initialize the buffer PrecisionMean.

    Declaration
    public static PositiveDefiniteMatrix PrecisionMeanInit(Wishart Precision)
    Parameters
    Type Name Description
    Wishart Precision

    Incoming message from precision.

    Returns
    Type Description
    PositiveDefiniteMatrix

    Initial value of buffer PrecisionMean.

    Remarks

    PrecisionMeanLogDet(Wishart)

    Update the buffer PrecisionMeanLogDet.

    Declaration
    public static double PrecisionMeanLogDet(Wishart Precision)
    Parameters
    Type Name Description
    Wishart Precision

    Incoming message from precision. Must be a proper distribution. If any element is uniform, the result will be uniform.

    Returns
    Type Description
    Double

    New value of buffer PrecisionMeanLogDet.

    Remarks

    Exceptions
    Type Condition
    ImproperMessageException

    Precision is not a proper distribution.

    SampleAverageConditional(VectorGaussian, PositiveDefiniteMatrix, VectorGaussian)

    EP message to sample.

    Declaration
    public static VectorGaussian SampleAverageConditional(VectorGaussian Mean, PositiveDefiniteMatrix Precision, VectorGaussian result)
    Parameters
    Type Name Description
    VectorGaussian Mean

    Incoming message from mean. Must be a proper distribution. If any element is uniform, the result will be uniform.

    PositiveDefiniteMatrix Precision

    Constant value for precision.

    VectorGaussian result

    Modified to contain the outgoing message.

    Returns
    Type Description
    VectorGaussian

    result

    Remarks

    The outgoing message is a distribution matching the moments of sample as the random arguments are varied. The formula is proj[p(sample) sum_(mean) p(mean) factor(sample,mean,precision)]/p(sample).

    Exceptions
    Type Condition
    ImproperMessageException

    Mean is not a proper distribution.

    SampleAverageConditional(Vector, PositiveDefiniteMatrix, VectorGaussian)

    EP message to sample.

    Declaration
    public static VectorGaussian SampleAverageConditional(Vector Mean, PositiveDefiniteMatrix Precision, VectorGaussian result)
    Parameters
    Type Name Description
    Vector Mean

    Constant value for mean.

    PositiveDefiniteMatrix Precision

    Constant value for precision.

    VectorGaussian result

    Modified to contain the outgoing message.

    Returns
    Type Description
    VectorGaussian

    result

    Remarks

    The outgoing message is the factor viewed as a function of sample conditioned on the given values.

    SampleAverageConditionalInit(VectorGaussian)

    Declaration
    public static VectorGaussian SampleAverageConditionalInit(VectorGaussian Mean)
    Parameters
    Type Name Description
    VectorGaussian Mean

    Incoming message from mean.

    Returns
    Type Description
    VectorGaussian
    Remarks

    SampleAverageConditionalInit(Vector)

    Declaration
    public static VectorGaussian SampleAverageConditionalInit(Vector Mean)
    Parameters
    Type Name Description
    Vector Mean

    Constant value for mean.

    Returns
    Type Description
    VectorGaussian
    Remarks

    SampleAverageLogarithm(VectorGaussian, Vector, Wishart, PositiveDefiniteMatrix, VectorGaussian)

    VMP message to sample.

    Declaration
    public static VectorGaussian SampleAverageLogarithm(VectorGaussian Mean, Vector MeanMean, Wishart Precision, PositiveDefiniteMatrix PrecisionMean, VectorGaussian result)
    Parameters
    Type Name Description
    VectorGaussian Mean

    Incoming message from mean. Must be a proper distribution. If any element is uniform, the result will be uniform.

    Vector MeanMean

    Buffer MeanMean.

    Wishart Precision

    Incoming message from precision. Must be a proper distribution. If any element is uniform, the result will be uniform.

    PositiveDefiniteMatrix PrecisionMean

    Buffer PrecisionMean.

    VectorGaussian result

    Modified to contain the outgoing message.

    Returns
    Type Description
    VectorGaussian

    result

    Remarks

    The outgoing message is the exponential of the average log-factor value, where the average is over all arguments except sample. The formula is exp(sum_(mean,precision) p(mean,precision) log(factor(sample,mean,precision))).

    Exceptions
    Type Condition
    ImproperMessageException

    Mean is not a proper distribution.

    ImproperMessageException

    Precision is not a proper distribution.

    SampleAverageLogarithm(VectorGaussian, Vector, PositiveDefiniteMatrix, VectorGaussian)

    VMP message to sample.

    Declaration
    public static VectorGaussian SampleAverageLogarithm(VectorGaussian mean, Vector MeanMean, PositiveDefiniteMatrix Precision, VectorGaussian result)
    Parameters
    Type Name Description
    VectorGaussian mean

    Incoming message from mean. Must be a proper distribution. If any element is uniform, the result will be uniform.

    Vector MeanMean

    Buffer MeanMean.

    PositiveDefiniteMatrix Precision

    Constant value for precision.

    VectorGaussian result

    Modified to contain the outgoing message.

    Returns
    Type Description
    VectorGaussian

    result

    Remarks

    The outgoing message is the exponential of the average log-factor value, where the average is over all arguments except sample. The formula is exp(sum_(mean) p(mean) log(factor(sample,mean,precision))).

    Exceptions
    Type Condition
    ImproperMessageException

    mean is not a proper distribution.

    SampleAverageLogarithm(Vector, Wishart, PositiveDefiniteMatrix, VectorGaussian)

    VMP message to sample.

    Declaration
    public static VectorGaussian SampleAverageLogarithm(Vector Mean, Wishart Precision, PositiveDefiniteMatrix PrecisionMean, VectorGaussian result)
    Parameters
    Type Name Description
    Vector Mean

    Constant value for mean.

    Wishart Precision

    Incoming message from precision. Must be a proper distribution. If any element is uniform, the result will be uniform.

    PositiveDefiniteMatrix PrecisionMean

    Buffer PrecisionMean.

    VectorGaussian result

    Modified to contain the outgoing message.

    Returns
    Type Description
    VectorGaussian

    result

    Remarks

    The outgoing message is the exponential of the average log-factor value, where the average is over all arguments except sample. The formula is exp(sum_(precision) p(precision) log(factor(sample,mean,precision))).

    Exceptions
    Type Condition
    ImproperMessageException

    Precision is not a proper distribution.

    SampleAverageLogarithm(Vector, PositiveDefiniteMatrix, VectorGaussian)

    VMP message to sample.

    Declaration
    public static VectorGaussian SampleAverageLogarithm(Vector Mean, PositiveDefiniteMatrix Precision, VectorGaussian result)
    Parameters
    Type Name Description
    Vector Mean

    Constant value for mean.

    PositiveDefiniteMatrix Precision

    Constant value for precision.

    VectorGaussian result

    Modified to contain the outgoing message.

    Returns
    Type Description
    VectorGaussian

    result

    Remarks

    The outgoing message is the factor viewed as a function of sample conditioned on the given values.

    SampleAverageLogarithmInit(VectorGaussian)

    Declaration
    public static VectorGaussian SampleAverageLogarithmInit(VectorGaussian Mean)
    Parameters
    Type Name Description
    VectorGaussian Mean

    Incoming message from mean.

    Returns
    Type Description
    VectorGaussian
    Remarks

    SampleAverageLogarithmInit(Vector)

    Declaration
    public static VectorGaussian SampleAverageLogarithmInit(Vector Mean)
    Parameters
    Type Name Description
    Vector Mean

    Constant value for mean.

    Returns
    Type Description
    VectorGaussian
    Remarks

    SampleConditional(Vector, PositiveDefiniteMatrix, VectorGaussian)

    Gibbs message to sample.

    Declaration
    public static VectorGaussian SampleConditional(Vector Mean, PositiveDefiniteMatrix Precision, VectorGaussian result)
    Parameters
    Type Name Description
    Vector Mean

    Constant value for mean.

    PositiveDefiniteMatrix Precision

    Constant value for precision.

    VectorGaussian result

    Modified to contain the outgoing message.

    Returns
    Type Description
    VectorGaussian

    result

    Remarks

    The outgoing message is the factor viewed as a function of sample conditioned on the given values.

    SampleMean(VectorGaussian, PositiveDefiniteMatrix, Vector)

    Update the buffer SampleMean.

    Declaration
    public static Vector SampleMean(VectorGaussian Sample, PositiveDefiniteMatrix SampleVariance, Vector result)
    Parameters
    Type Name Description
    VectorGaussian Sample

    Incoming message from sample. Must be a proper distribution. If any element is uniform, the result will be uniform.

    PositiveDefiniteMatrix SampleVariance

    Buffer SampleVariance.

    Vector result

    Modified to contain the outgoing message.

    Returns
    Type Description
    Vector

    result

    Remarks

    Exceptions
    Type Condition
    ImproperMessageException

    Sample is not a proper distribution.

    SampleMeanInit(VectorGaussian)

    Initialize the buffer SampleMean.

    Declaration
    public static Vector SampleMeanInit(VectorGaussian Sample)
    Parameters
    Type Name Description
    VectorGaussian Sample

    Incoming message from sample.

    Returns
    Type Description
    Vector

    Initial value of buffer SampleMean.

    Remarks

    SampleVariance(VectorGaussian, PositiveDefiniteMatrix)

    Update the buffer SampleVariance.

    Declaration
    public static PositiveDefiniteMatrix SampleVariance(VectorGaussian Sample, PositiveDefiniteMatrix result)
    Parameters
    Type Name Description
    VectorGaussian Sample

    Incoming message from sample. Must be a proper distribution. If any element is uniform, the result will be uniform.

    PositiveDefiniteMatrix result

    Modified to contain the outgoing message.

    Returns
    Type Description
    PositiveDefiniteMatrix

    result

    Remarks

    Exceptions
    Type Condition
    ImproperMessageException

    Sample is not a proper distribution.

    SampleVarianceInit(VectorGaussian)

    Initialize the buffer SampleVariance.

    Declaration
    public static PositiveDefiniteMatrix SampleVarianceInit(VectorGaussian Sample)
    Parameters
    Type Name Description
    VectorGaussian Sample

    Incoming message from sample.

    Returns
    Type Description
    PositiveDefiniteMatrix

    Initial value of buffer SampleVariance.

    Remarks

    In This Article
    Back to top Copyright © .NET Foundation. All rights reserved.