Search Results for

    Show / Hide Table of Contents

    Class GaussianEstimator

    Estimates a Gaussian distribution from samples.

    Inheritance
    Object
    GaussianEstimator
    Implements
    Estimator<Gaussian>
    Accumulator<Gaussian>
    Accumulator<Double>
    SettableTo<GaussianEstimator>
    ICloneable
    Inherited Members
    Object.Equals(Object)
    Object.Equals(Object, Object)
    Object.GetHashCode()
    Object.GetType()
    Object.MemberwiseClone()
    Object.ReferenceEquals(Object, Object)
    Object.ToString()
    Namespace: Microsoft.ML.Probabilistic.Distributions
    Assembly: Microsoft.ML.Probabilistic.dll
    Syntax
    public class GaussianEstimator : Estimator<Gaussian>, Accumulator<Gaussian>, Accumulator<double>, SettableTo<GaussianEstimator>, ICloneable

    Constructors

    GaussianEstimator()

    Creates a new Gaussian estimator

    Declaration
    public GaussianEstimator()

    Fields

    mva

    Where to accumulate means and variances

    Declaration
    public MeanVarianceAccumulator mva
    Field Value
    Type Description
    MeanVarianceAccumulator

    Methods

    Add(Gaussian)

    Adds a Gaussian distribution item to the estimator

    Declaration
    public void Add(Gaussian distribution)
    Parameters
    Type Name Description
    Gaussian distribution

    The distribution instance to add

    Add(Gaussian, Double)

    Adds a Gaussian distribution with given weight to the estimator

    Declaration
    public void Add(Gaussian distribution, double weight)
    Parameters
    Type Name Description
    Gaussian distribution

    The distribution instance to add

    Double weight

    The weight of the distribution

    Add(Double)

    Adds an sample to the estimator

    Declaration
    public void Add(double sample)
    Parameters
    Type Name Description
    Double sample

    The sample add

    Add(Double, Double)

    Adds a sample with a given weight to the estimator

    Declaration
    public void Add(double sample, double weight)
    Parameters
    Type Name Description
    Double sample

    The sample to add

    Double weight

    The weight of the sample

    Clear()

    Clears the accumulator

    Declaration
    public void Clear()

    Clone()

    Returns a clone of this estimator.

    Declaration
    public object Clone()
    Returns
    Type Description
    Object

    GetDistribution(Gaussian)

    Computes the maximum-likelihood Gaussian from the samples.

    Declaration
    public Gaussian GetDistribution(Gaussian result)
    Parameters
    Type Name Description
    Gaussian result
    Returns
    Type Description
    Gaussian

    Returns a new Gaussian object.

    SetTo(GaussianEstimator)

    Sets the state of this estimator from the specified estimator.

    Declaration
    public void SetTo(GaussianEstimator value)
    Parameters
    Type Name Description
    GaussianEstimator value

    Implements

    Estimator<T>
    Accumulator<T>
    Accumulator<T>
    SettableTo<T>
    System.ICloneable
    In This Article
    Back to top Copyright © .NET Foundation. All rights reserved.