Skip to main content

Infer.NET user guide : Learners : Bayes Point Machine classifiers : Command-line runners

Evaluation

The Evaluate module computes a number of performance metrics for given predictions and ground truth labels. The module can hence be used to evaluate predictions from any classifier, not just the Bayes Point Machine!

The Evaluate module has the following command-line arguments:

Required arguments

Optional arguments

A more detailed explanation of classifier evaluation and performance metrics is available here.

Example

Learner Classifier Evaluate --ground-truth iris-test-set.dat   
    --predictions iris-predictions.dat --report evaluation.txt   
    --calibration-curve calibration.csv --roc-curve roc.csv   
    --precision-recall-curve pr.csv --positive-class Iris-virginica

Sample output

Here is an example of an evaluation report:

Classifier evaluation report   
******************************  

           Date:      14/10/2014 18:50:37  
   Ground truth:      test-set.dat  
    Predictions:      predictions.dat  

 Instance-averaged performance (micro-averages)  
================================================  

                Precision =     0.9429  
                   Recall =     0.9427  
                       F1 =     0.9427  

                 #Correct =       1118  
                   #Total =       1186  
                 Accuracy =     0.9427  
                    Error =     0.0573  

                      AUC =     0.9915  

                 Log-loss =     0.2487  

 Class-averaged performance (macro-averages)  
=============================================  

                Precision =     0.9352  
                   Recall =     0.9383  
                       F1 =     0.9366  

                 Accuracy =     0.9383  
                    Error =     0.0617  

                      AUC =     0.9917  

         M (pairwise AUC) =     0.9952  

 Performance on individual classes  
===================================  

 Index           Label     #Truth  #Predicted  #Correct  Precision     Recall         F1        AUC  
---------------------------------------------------------------------------------------------------  
     1               3        603         596       575     0.9648     0.9536     0.9591     0.9908  
     2               2        280         277       255     0.9206     0.9107     0.9156     0.9910  
     3               1        303         313       288     0.9201     0.9505     0.9351     0.9935  

 Confusion matrix  
==================  

Truth \ Prediction ->  
       3    2    1  
  3  575   15   13  
  2   13  255   12  
  1    8    7  288  


 Pairwise AUC matrix  
=====================  

Truth \ Prediction ->  
          3       2       1  
  3       .  0.9942  0.9963  
  2  0.9942       .  0.9950  
  1  0.9963  0.9950       .