
Infer.NET and CSOFT
A framework and language for 

Machine Learning

John Winn
Machine Learning and Perception Group

NIPS, December 2008



Revise model/method

How machine learning is applied

Define probabilistic model

Choose inference method

Derive algorithm by hand

Implement algorithm 

(e.g. Matlab)

Re-implement algorithm 

(e.g. C++/C#)

Current approach



Revise model/method

Apply 

inference engine

How machine learning is applied

Define probabilistic model

Choose inference method

Derive algorithm by hand

Implement algorithm 

(e.g. Matlab)

Re-implement algorithm 

(e.g. C++/C#)

Current approach

Define probabilistic model

Write model in 

modelling language

Revise model/

engine settings

New approach



Example:

Will approve 

my trip

Coffee Raining

Good mood

P(C=1) = 0.6 P(R=1) = 0.8

P(G=1 | C,R) =
0.2    otherwise

0.9    if C | ~R

P(L=1 | G) =
0.4    otherwise

0.9    if G=1

Raining=1

BossPredictor



Hand-coded solution (Matlab)
% Perform variable elimination on BossPredictor model

% Model specification

PCoffee  = [0.4 0.6];

PRaining = [0.2 0.8];

PGoodMood(2,:,:) = [0.9 0.2;0.9 0.9];

PGoodMood(1,:,:) = 1 - PGoodMood(2,:,:);

PLikesIdea(2,:) = [0.4 0.9];

PLikesIdea(1,:) = 1 - PLikesIdea(2,:);

% Add observation

PRaining = [0 1];

%%% Perform variable elimination

% Eliminate coffee

PGoodMood2 = zeros(2,2);

for coffee=1:2

PGoodMood2 = PGoodMood2 + squeeze(PGoodMood(:,coffee,:)*PCoffee(coffee));

end

% Eliminate raining

PGoodMood3 = zeros(2,1);

for raining = 1:2

PGoodMood3 = PGoodMood3 + PGoodMood2(:,raining)*PRaining(raining);

end

% Eliminate good mood

PLikesIdea2 = zeros(2,1);

for goodMood = 1:2

PLikesIdea2 = PLikesIdea2 + PLikesIdea(:,goodMood)*PGoodMood3(goodMood);

end

PLikesIdea2(2)

P(likes idea)=

Is raining: 71%

Not raining: 85%



Will approve my

friend’s trip

Example: BossPredictor

Good mood

Coffee RainingRaining=1

Approved my

trip=1



BossPredictor with Inference Engine

Will approve my 

friend’s trip

Coffee Raining

Good mood

P(C=1) P(R=1) 

P(G=1 | C,R)

P(L=1 | G)
Approved my

trip=1

Raining=1

P(approves friend’s trip |

approved my trip) = 79%

Inference runs 

automatically in new model:



Existing modelling methods

◼ Graphical editors/factor graphs

❑ Easy to use

❑ Hard to develop and maintain large models

❑ Hard to integrate with other code

❑ Limited scope

◼ XML

❑ Awkward syntax

❑ Hard to integrate with other code

❑ Limited toolset



CSOFT modelling language

◼ A representation language for probabilistic 

models.

◼ Takes C# and adds support for:

❑ random variables

❑ constraints on variables

❑ inference 

◼ Can be embedded in ordinary C# to allow 

integration of deterministic + stochastic code



CSOFT – random variables

◼ Normal variables have a fixed single value. 
e.g. int length=6, 

bool visible=true.

◼ Random variables have uncertain value 

specified by a probability distribution.

e.g. int length = random(Uniform(0,10))

bool visible = random(Bernoulli(0.8)).

◼ Introduce random operator which means

‘is distributed as’.



CSOFT –constraints

◼ We can define constraints on random 

variables, e.g.
constrain(visible==true)

constrain(length==4)

constrain(length>0)

constrain(i==j)

◼ The constrain(b) operator means ‘we 

constrain b to be true’.



CSOFT – inference

◼ The infer() operator gives the posterior 

distribution of one or more random variables. 

◼ Example:
int i = random(Uniform(1,10));

bool b = (i*i>50);

Dist bdist = infer(b);//Bernoulli(0.3)

◼ Output of infer() is always deterministic even when 
input is random.



BossPredictor in CSOFT

bool coffee = random(Bernoulli(0.6));

bool raining = random(Bernoulli (0.8));

bool goodMood = 

random(Bernoulli((coffee|!raining)?0.9:0.2));

bool approvesTrip = random(Bernoulli(goodMood?0.9:0.4));

Model definition

Constraints and inference

constrain(raining==true);

return infer(approvesTrip);



TrueSkillTM in CSOFT

double[] skill=new double[nPlayers];

double[] performance=new double[nPlayers];

for (int j=0; j<nPlayers; j++) {

skill[j]=random(Gaussian(mu[j],sigma[j]));

double x=random(Gaussian(0, beta));

performance[j] = skill[j] + x;

if (j>0) constrain(performance[j-1] > 

performance[j]);

}

return infer(skill);

TrueSkill model (without draws)



CSOFT for analysing existing code

int i=random(Uniform(-100,100)); 

bool b = false;

try {

Read(i);

} catch (Exception ex) {

b = true;

}

return infer(b); 

Existing code called with random parameter

Probability of throwing an exception

public byte[] Read(int numBytes) {

if (numBytes<0) throw new

ArgumentOutOfRangeException();

…

}



Random objects

◼ CSOFT is object-oriented.  Random objects are 

objects whose members are random variables. 

◼ Useful for domain-specific inference: can 

provide a library of random objects relevant to a 
domain e.g. Image, ImageOperation, Texture.

◼ For example: machine vision models can be 

specified as a series of graphics operations 

which generate an image.



Implementing CSOFT

CSOFT is implemented as a .NET library.  The operators 
appear as static methods e.g. Csoft.random()

Non-deterministic

CSOFT

Model 

specification

Inference engine

C#, VB, F#...

MSIL 
(Microsoft intermediate language)

CLR
(Common Language Runtime)

Deterministic

Compilation

Execution

Compilation

Execution



Inference engine requirements

To support CSOFT, engine must be:

◼ Flexible: capable of handling very broad 

range of model specifications

◼ Accurate: must give appropriately accurate 

inference results so must use an appropriate 

inference algorithm

◼ Efficient: must scale to run on large models 

with large data sets



Infer.NET version 1

◼ Flexible: Yes - general purpose architecture 

for discrete/continuous variables and a large 

variety of factors

◼ Accurate: Yes – supported multiple inference 

algorithms: VMP/EP/Gibbs

◼ Efficient: No – constructed in-memory factor 

graphs and traversed them during inference, 

introducing considerable overhead.  Also, 

made the code very difficult to maintain as 

more features were added.



Infer.NET version 2

◼ Version 2 compiles modelling code 

into inference code. 

◼ No in-memory factor graphs = no overhead

◼ Consists of a chain of code transformations:

T1 T2 T3
CSOFT

program 

Inference 

program

◼ Each intermediate program is a valid C# 

program.



Infer.NET inference engine

Will approve 

my trip

Coffee Raining

Good mood

Raining=1

T1 T2 T3
CSOFT

program 

Inference 

program



Infer.NET compiler

Channel 

transform
T2 T3

CSOFT

program 

Inference 

program

Will approve 

my trip

Good mood

Raining=1Coffee



Infer.NET compiler

Channel 

transform

Message 

transform
T3

CSOFT

program 

Inference 

program

Will approve 

my trip

Coffee

Good mood

Raining



Infer.NET compiler

Channel 

transform

Message 

transform
Scheduler

CSOFT

program 

Inference 

program

Will approve 

my trip

Coffee

Good mood

Raining

Schedule



Infer.NET Demo



Advantages of CSOFT + Infer.NET
◼ Rich and compact modelling language

Wide range of complex models can be represented succinctly.

◼ Powerful inference framework
Supports multiple inference algorithms, highly customisable.

◼ Efficient inference
Compilation means almost no overhead.

◼ Easy integration
Inference can be invoked from .NET with minimal effort.

◼ Easy to learn
Just the three new operators added to the language



Thanks!

http://research.microsoft.com/infernet


