
Model evidence and gate messages in Infer.NET

Thomas Minka
Microsoft Research Ltd., Cambridge, UK

June 18, 2013

1 Simplifying Z̃

Suppose we have run expectation propagation (EP) to convergence on a factor graph
∏
a fa(x)

and obtained a set of messages ma→i(xi) representing a fully factorized approximate distribution
q(x) =

∏
a

∏
ima→i(xi). How can we efficiently compute the EP normalizing constant Z̃? Assuming

the messages were properly scaled during message passing, we should have Z̃ =
∫
x
q(x)dx. But if the

messages were normalized or otherwise rescaled during message passing, as is common for numerical
stability, we need to do some extra work to reconstruct the optimal scale factors.

Given any set of messages, properly scaled or not, the optimal normalizing constant for EP is
(Minka, 2005) (α = 1):

Z̃ =

(∫
x

q(x)dx

) A∏
a=1

sa (1)

where sa =

∫
x

fa(x)∏
ima→i(xi)

q(x)dx∫
x

q(x)dx

(2)

To simplify this formula, let’s define the following notation:

zi =

∫
xi

∏
a

ma→i(xi)dxi (3)

q̄(xi) =
1

zi

∏
a

ma→i(xi) (4)

z
\a
i =

∫
xi

∏
b6=a

mb→i(xi)dxi (5)

q̄\a(xi) =
1

z
\a
i

∏
b6=a

mb→i(xi) (6)

zi

z
\a
i

=

∫
xi

ma→i(xi)q̄
\a(xi) (7)

z
\a
i

zi
=

∫
xi

q̄(xi)

ma→i(xi)
dxi (8)

Now we can simplify as follows:∫
x

q(x)dx =
∏
i

∫
xi

∏
a

ma→i(xi)dxi (9)

=
∏
i

zi (10)

1

sa =

∫
x

fa(x)∏
ima→i(xi)

∏
i

q̄(xi)dx (11)

=

∫
x

fa(x)
∏
i

q̄(xi)

ma→i(xi)
dx (12)

=

∫
x

fa(x)
∏
i

z
\a
i

zi
q̄\a(xi)dx (13)

Let xa denote the set of variables used by fa, and let i ∈ a be shorthand for xi ∈ xa. Then (13)
simplifies to

sa =

(∏
i∈a

z
\a
i

zi

)∫
xa

fa(xa)
∏
i∈a

q̄\a(xi)dxa (14)

=

∫
xa
fa(xa)

∏
i∈a q̄

\a(xi)dxa∏
i∈a
∫
xi
ma→i(xi)q̄\a(xi)dxi

(15)

=

∫
xa
fa(xa)

∏
i∈a q̄

\a(xi)dxa∫
xa
f̃a(xa)

∏
i∈a q̄

\a(xi)dxa
(16)

Note that z
\a
i /zi can be computed locally as the normalizer of q̄(xi)/ma→i(xi) (8).

As a computational scheme, each variable collects its messages, computes zi and q̄(xi), sending
q̄(xi) to neighboring factors. Each factor then computes sa from q̄(xi) and ma→i(xi). The final
result is Z̃ =

∏
i zi
∏
a sa.

2 Factor-specific simplications

In the case of a unary factor which is already in the approximating family, we have fa(xi) = ma→i(xi)
so sa = 1. More generally, consider a factor whose message to xj (for some specific j) satisfies the
relation:

ma→j(xj) =

∫
xa\xj

fa(xa)
∏

i∈a,i6=j

(q̄\a(xi)dxi) (17)

This happens when the marginal for xj is already in the approximating family. When (17) holds,
we say that ma→j is exact. For example, when all variables are Gaussian, the factor I(xi = xj +xk)
sends exact messages to all its arguments. Another example is when xj is discrete so that ma→j is
an exact table.

2

If ma→j is exact for some j, then sa simplifies as follows:

sa =

(∏
i∈a

z
\a
i

zi

)∫
xa

fa(xa)
∏
i∈a

q̄\a(xi)dxa (18)

=

(∏
i∈a

z
\a
i

zi

)∫
xj

∫
xa\xj

fa(xa)
∏

i∈a,i 6=j

(q̄\a(xi)dxi)

 q̄\a(xj)dxj (19)

=

(∏
i∈a

z
\a
i

zi

)∫
xj

ma→j(xj)q̄
\a(xj)dxj (20)

=

(∏
i∈a

z
\a
i

zi

)
zj

z
\a
j

(21)

=
∏

i∈a,i6=j

z
\a
i

zi
(22)

In general, (22) will hold whenever ma→j has the exact scale factor defined by EP, i.e. ma→j was
not rescaled. But in practice this only happens when ma→j is exact.

3 Example

Consider the factor graph defined by the following stochastic program:

x1 ∼ N (0, 1) (f1) (23)

x2 ∼ N (0, 1) (f2) (24)

x3 = x1 − x2 (f3) (25)

assert(x3 > 0) (f4) (26)

Because f1 and f2 are exact unary factors, s1 = s2 = 1. Because f3 is exact for x3, s3 =
z
\3
1

z1

z
\3
2

z2
.

Because the messages from the unary factors are normalized, z
\3
1 = z

\3
2 = 1. The message from f3

to x3 is also normalized so z
\4
3 = 1. Thus

s4 =
z
\4
3

z3

∫
x3

f4(x3)q̄\4(x3)dx3 (27)

Z̃ = z1z2z3s1s2s3s4 (28)

= z1z2z3(1)(1)
1

z1

1

z2

1

z3

∫
x3

f4(x3)q̄\4(x3)dx3 (29)

=

∫
x3

f4(x3)q̄\4(x3)dx3 (30)

The simplifications achieved in this example suggest another way of computing the evidence, which
exploits the directedness of factors. The next section develops this algorithm.

4 Evidence computation on directed graphs

Suppose we have a factor graph with directed edges. The edge directions can be arbitrary, i.e. they
do not have to imply any independences. Then for each node we can distinguish its parent nodes

3

from its child nodes. Previously, we computed Z̃ as follows:

Z̃ =
∏
i

zi
∏
a

sa (31)

=
∏
i

(∫
xi

∏
a

ma→i(xi)dxi

)∏
a

∫
xa
fa(xa)

∏
i∈a q̄

\a(xi)dxa∏
i∈a
∫
xi
ma→i(xi)q̄\a(xi)dxi

(32)

The denominator of this expression has one term for every edge in the factor graph. In the directed
case, we will rearrange these denominator terms as follows:

z′i =

∫
xi

∏
ama→i(xi)dxi∏

a∈ch(i)

∫
xi
ma→i(xi)q̄\a(xi)dxi

(33)

s′a =

∫
xa
fa(xa)

∏
i∈a q̄

\a(xi)dxa∏
i∈ch(a)

∫
xi
ma→i(xi)q̄\a(xi)dxi

(34)

Z̃ =
∏
i

z′i
∏
a

s′a (35)

=
∏
i

∫
xi

∏
ama→i(xi)dxi∏

a∈ch(i)

∫
xi
ma→i(xi)q̄\a(xi)dxi

∏
a

∫
xa
fa(xa)

∏
i∈a q̄

\a(xi)dxa∏
i∈ch(a)

∫
xi
ma→i(xi)q̄\a(xi)dxi

(36)

Some special cases:

1. If a factor has no children (a leaf factor), then

s′a =

∫
xa

fa(xa)
∏
i∈a

q̄\a(xi)dxa (37)

2. If a factor has one child variable xi, and ma→i is exact, then s′a = 1.

3. If a variable has one parent and one child factor, then z′i =
∫
xi
mpar→i(xi)dxi.

Applying these rules to the example in section 3 gives immediately the most compact form of the
evidence. This is the approach that Infer.NET uses.

5 Power EP

Given any set of messages, properly scaled or not, the optimal normalizing constant for Power EP
is (Minka, 2005):

Z̃ =

(∫
x

q(x)dx

) A∏
a=1

sa (38)

where sa =


∫
x

fa(x)αa∏
ima→i(xi)αa

q(x)dx∫
x

q(x)dx


1/αa

(39)

4

To simplify this formula, let’s define the following notation:

zi =

∫
xi

∏
a

ma→i(xi)dxi (40)

q̄(xi) =
1

zi

∏
a

ma→i(xi) (41)

z
\a
i =

∫
xi

ma→i(xi)
1−αa

∏
b6=a

mb→i(xi)dxi (42)

q̄\a(xi) =
1

z
\a
i

ma→i(xi)
1−αa

∏
b 6=a

mb→i(xi) (43)

zi

z
\a
i

=

∫
xi

ma→i(xi)
αa q̄\a(xi) (44)

z
\a
i

zi
=

∫
xi

q̄(xi)

ma→i(xi)αa
dxi (45)

Now we can simplify as follows:∫
x

q(x)dx =
∏
i

∫
xi

∏
a

ma→i(xi)dxi (46)

=
∏
i

zi (47)

sa =

(∫
x

fa(x)αa∏
ima→i(xi)αa

∏
i

q̄(xi)dx

)1/αa

(48)

=

(∫
x

fa(x)αa

∏
i

q̄(xi)

ma→i(xi)αa
dx

)1/αa

(49)

=

(∫
x

fa(x)αa

∏
i

z
\a
i

zi
q̄\a(xi)dx

)1/αa

(50)

Let xa denote the set of variables used by fa, and let i ∈ a be shorthand for xi ∈ xa. Then (50)
simplifies to

sa =

(∏
i∈a

z
\a
i

zi

)1/αa
(∫

xa

fa(xa)αa

∏
i∈a

q̄\a(xi)dxa

)1/αa

(51)

=

(∫
xa
fa(xa)αa

∏
i∈a q̄

\a(xi)dxa∏
i∈a
∫
xi
ma→i(xi)αa q̄\a(xi)dxi

)1/αa

(52)

A message in Power EP is exact if

ma→j(xj)
αa =

∫
xa\xj

fa(xa)αa

∏
i∈a,i6=j

(q̄\a(xi)dxi) (53)

If ma→j is exact for some j, then sa simplifies as follows:

sa =

 ∏
i∈a,i 6=j

z
\a
i

zi

1/αa

(54)

5

6 Power EP on directed graphs

As with EP, we can redistribute denominator terms according to the edge directions. Previously, we
computed Z̃ as follows:

Z̃ =
∏
i

zi
∏
a

sa (55)

=
∏
i

(∫
xi

∏
a

ma→i(xi)dxi

)∏
a

(∫
xa
fa(xa)αa

∏
i∈a q̄

\a(xi)dxa∏
i∈a
∫
xi
ma→i(xi)αa q̄\a(xi)dxi

)1/αa

(56)

The denominator of this expression has one term for every edge in the factor graph. In the directed
case, we will rearrange these denominator terms as follows:

z′i =

∫
xi

∏
ama→i(xi)dxi∏

a∈ch(i)

(∫
xi
ma→i(xi)αa q̄\a(xi)dxi

)1/αa
(57)

s′a =

(∫
xa
fa(xa)αa

∏
i∈a q̄

\a(xi)dxa∏
i∈ch(a)

∫
xi
ma→i(xi)αa q̄\a(xi)dxi

)1/αa

(58)

Z̃ =
∏
i

z′i
∏
a

s′a (59)

=
∏
i

∫
xi

∏
ama→i(xi)dxi∏

a∈ch(i)

(∫
xi
ma→i(xi)αa q̄\a(xi)dxi

)1/αa

∏
a

(∫
xa
fa(xa)αa

∏
i∈a q̄

\a(xi)dxa∏
i∈ch(a)

∫
xi
ma→i(xi)αa q̄\a(xi)dxi

)1/αa

(60)

Some special cases:

1. If a factor has no children (a leaf factor), then

s′a =

(∫
xa

fa(xa)αa

∏
i∈a

q̄\a(xi)dxa

)1/αa

(61)

2. If a factor has one child variable xi, and ma→i is exact, then s′a = 1.

3. If a variable has one parent and one child factor, then z′i does not simplify unless αa = 1.

6

7 Power plates

A power plate is a factor of the form

fa(x) = fc(x)n (62)

By applying power EP with αa, we reduce the problem to power EP on fc with αc = nαa, with the
following conversions:

ma→i(xi) = mc→i(xi)
nsai (63)

sai =

∫
xi
ma→i(xi)dxi∫

xi
mc→i(xi)ndxi

(64)

q̄\c(xi) = q̄\a(xi) (65)

∝ ma→i(xi)
1−αa

∏
b 6=a

mb→i(xi) = mc→i(xi)
n−αc

∏
b 6=a

mb→i(xi) (66)

zi

z
\a
i

= sαa
ai

∫
xi

mc→i(xi)
αc q̄\c(xi) = sαa

ai

zi

z
\c
i

(67)

sa =

(∏
i∈a

z
\a
i

zi

)1/αa
(∫

xa

fa(xa)αa

∏
i∈a

q̄\a(xi)dxa

)1/αa

(68)

=

(∏
i∈a

z
\c
i

zi

)n/αc
(∏
i∈a

1

sai

)(∫
xc

fc(xc)
αc

∏
i∈c

q̄\c(xi)dxc

)n/αc

(69)

= snc
∏
i∈a

1

sai
= snc

∏
i∈a

∫
xi
mc→i(xi)

ndxi∫
xi
ma→i(xi)dxi

(70)

In the directed case, this becomes

s′a =

(∫
xa
fa(xa)αa

∏
i∈a q̄

\a(xi)dxa∏
i∈ch(a)

∫
xi
ma→i(xi)αa q̄\a(xi)dxi

)1/αa

(71)

=

(∫
xc
fc(xa)αc

∏
i∈c q̄

\c(xi)dxc∏
i∈ch(a) s

αa
ai

∫
xi
mc→i(xi)αc q̄\c(xi)dxi

)n/αc

(72)

= (s′c)
n
∏

i∈ch(a)

1

sai
= (s′c)

n
∏

i∈ch(a)

∫
xi
mc→i(xi)

ndxi∫
xi
ma→i(xi)dxi

(73)

8 Gates

A gate is a factor of the form

fa(x, y) = fb(x)δ(y=1)fc(x)δ(y=0) (74)

We want to derive the messages ma→i, ma→y, and sa in terms of fb and fc.

ma→y(y) ∝
(∫

x

fb(x)αa q̄\a(x)dx

)δ(y=1)/αa
(∫

x

fc(x)αa q̄\a(x)dx

)δ(y=0)/αa

(75)

Note that, regardless of the scaling of ma→i, we have the identity:

ma→i(xi)
αa q̄\a(xi)∫

xi
ma→i(xi)αa q̄\a(xi)dxi

=
proj

[∫
x\xi

fa(x)αa q̄\a(x)dx
]

∫
x
fa(x)αa q̄\a(x)dx

(76)

7

ma→i(xi) ∝

proj
[
q̄\a(y = 1)proj

[∫
x\xi

fb(x)αa q̄\a(x)dx
]

+ q̄\a(y = 0)proj
[∫

x\xi
fc(x)αa q̄\a(x)dx

]]
q̄\a(xi)

1/αa

(77)

=


proj

[
g1

mb→i(xi)
αa q̄\a(xi)∫

xi
mb→i(xi)αa q̄\a(xi)dxi

+ g0
mc→i(xi)

αa q̄\a(xi)∫
xi
mc→i(xi)αa q̄\a(xi)dxi

]
q̄\a(xi)


1/αa

(78)

where g1 = q̄\a(y = 1)

∫
x

fb(x)αa q̄\a(x)dx (79)

g0 = q̄\a(y = 0)

∫
x

fc(x)αa q̄\a(x)dx (80)

sa =

(
q̄\a(y = 1)

∫
x
fb(x)αa q̄\a(x)dx + q̄\a(y = 0)

∫
x
fc(x)αa q̄\a(x)dx

(q̄\a(y = 1)ma→y(y = 1)αa + q̄\a(y = 0)ma→y(y = 0)αa)
∏
i∈a
∫
xi
ma→i(xi)αa q̄\a(xi)dxi

)1/αa

(81)

If we define sb and sc as follows, we can express the above formulas very simply:

sb =

(∫
x
fb(x)αa q̄\a(x)dx∏

i∈a
∫
xi
ma→i(xi)αa q̄\a(xi)dxi

)1/αa

(82)

sc =

(∫
x
fc(x)αa q̄\a(x)dx∏

i∈a
∫
xi
ma→i(xi)αa q̄\a(xi)dxi

)1/αa

(83)

ma→y(y) =
s
δ(y=1)
b s

δ(y=0)
c

sb + sc
(84)

g1 = q̄\a(y = 1)sαa

b (85)

g0 = q̄\a(y = 0)sαa
c (86)

sa = sb + sc (87)

On directed graphs, this becomes:

s′b =

(∫
x
fb(x)αa q̄\a(x)dx∏

i∈ch(a)

∫
xi
ma→i(xi)αa q̄\a(xi)dxi

)1/αa

(88)

s′c =

(∫
x
fc(x)αa q̄\a(x)dx∏

i∈ch(a)

∫
xi
ma→i(xi)αa q̄\a(xi)dxi

)1/αa

(89)

s′a = q̄\a(y = 1)s′b + q̄\a(y = 0)s′c (90)

8

9 Variational Message Passing

Given any set of messages, properly scaled or not, the optimal normalizing constant for Variational
Message Passing is (Minka, 2005):

Z̃ =

(∫
x

q(x)dx

) A∏
a=1

sa (91)

where sa = exp


∫
x

q(x) log
fa(x)∏

ima→i(xi)
dx∫

x

q(x)dx

 (92)

To simplify this formula, let’s define the following notation:

zi =

∫
xi

∏
a

ma→i(xi)dxi (93)

q̄(xi) =
1

zi

∏
a

ma→i(xi) (94)

Now we can simplify as follows:∫
x

q(x)dx =
∏
i

∫
xi

∏
a

ma→i(xi)dxi (95)

=
∏
i

zi (96)

sa = exp

(∫
x

(∏
i

q̄(xi)

)
log

fa(x)∏
ima→i(xi)

dx

)
(97)

= exp

(∫
xa

(∏
i∈a

q̄(xi)

)
log

fa(xa)∏
i∈ama→i(xi)

dxa

)
(98)

Alternatively, (91) is equivalent to:

Z̃ = exp

(
q̄(x) log

∏
a

fa(x)− q̄(x) log q̄(x)

)
(99)

Therefore we can divide the work as follows: each factor computes s′a = exp(q̄(x) log
∏
a fa(x)) and

each variable computes exp(−q̄(xi) log q̄(xi)). Deterministic factors and their output variables send
nothing.

9.1 Gates under VMP

ma→i(xi) ∝ exp (q̄(y = 1) logmb→i(xi) + q̄(y = 0) logmc→i(xi)) (100)

s′b = exp

(∫
x

q̄(x) log fb(x)

)
(101)

s′c = exp

(∫
x

q̄(x) log fc(x)

)
(102)

ma→y(y) =
(s′b)

δ(y=1)(s′c)
δ(y=0)

s′b + s′c
(103)

s′a = (s′b)
q̄(y=1)(s′c)

q̄(y=0) (104)

9

10 Summary

Let every factor implement functions Approximate and Integrate with the following definitions:

Approximate(fa, q̄
\a, αa) ∝

(
proj

[
fa(xa)αa q̄\a(xa)

]
q̄\a(xa)

)1/αa

(105)

=
∏
i

proj
[
q̄\a(xi)

∫
xa\xi

fa(xa)αa
∏
j 6=i(q̄

\a(xj)dxj)
]

q̄\a(xi)

1/αa

(106)

Integrate(fa, q̄
\a, f̃a, αa) =

(∫
xa
fa(xa)αa q̄\a(xa)dxa∫

xa
f̃a(xa)αa q̄\a(xa)dxa

)1/αa

= sa (107)

Note both routines are invariant to rescaling q̄\a. For αa = 0:

Approximate(fa, q̄
\a, αa) ∝

∏
i

exp

∫
xa\xi

log(fa(xa))
∏
j 6=i

(q̄(xj)dxj)

 (108)

Integrate(fa, q̄
\a, f̃a, αa) = exp

(∫
xa

q̄(xa) log
fa(xa)

f̃a(xa)
dxa

)
(109)

For a power plate, we can define these functions recursively:

Approximate(fa, q̄
\a, αa) ∝ Approximate(fc, q̄

\a, nαa)n (110)

Integrate(fa, q̄
\a, f̃a, αa) = Integrate(fc, q̄

\a, f̃c, nαa)n
∫
xc
f̃c(xc)

ndxc∫
xa
f̃a(xa)dxa

(111)

where f̃c(xc) ∝ f̃a(xa)1/n (112)

For a gate:

Approximate(fa, q̄
\a, αa) ∝ Merge(g1,Approximate(fb, q̄

\a(xb), αa), g0,Approximate(fc, q̄
\a(xc), αa), αa)

(113)

×
s
δ(y=1)
b s

δ(y=0)
c

sb + sc
(114)

Integrate(fa, q̄
\a, f̃a, αa) = sb + sc (115)

where g1 = q̄\a(y = 1)sαa

b (116)

g0 = q̄\a(y = 0)sαa
c (117)

sb = Integrate(fb, q̄
\a(xb), f̃a(xb), αa) (118)

sc = Integrate(fc, q̄
\a(xc), f̃a(xc), αa) (119)

On directed graphs, we can instead use IntegrateD defined by:

IntegrateD(fa, q̄
\a, f̃a, αa) = s′a =

(∫
xa
fa(xa)αa

∏
i∈a q̄

\a(xi)dxa∏
out i

∫
xi
ma→i(xi)αa q̄\a(xi)dxi

)1/αa

×

∏
out i

∫
xi

ma→i(xi)dxi

(120)

Note IntegrateD is invariant to rescaling q̄\a and ma→i for outgoing edges but it requires q̄\a to be
normalized for incoming edges.

10

11 Gate implementation in Infer.NET

11.1 EP directed

Replicate and UsesEqualDef both use the same formula for evidence contribution. Therefore no
special handling is needed for deterministic factors.

The case variables collect IntegrateD(fb, q̄
\a(xb), f̃b(xb), αa = 1) from the child factors. Nothing

is collected from the Enter/Exit variables. The Exit operator contributes
∫
x
f̃b(xb)q̄

\a(xb)dx which
cancels the denominator of IntegrateD. The missing factor in sb is provided as an evidence message
from Exit. Enter does not send an evidence message.

11.2 VMP

The case variables collect s′b from the child factors. The Enter variables are marked deterministic
and send nothing to the case variable. The Exit variables send exp(−q̄(xi) log q̄(xi)) to the case
variable. These messages must be cancelled by the Exit operator.

11

12 Mixing EP and VMP

VMP can be mixed with EP by viewing it as Power EP with α = 1 for EP factors and α = 0 for VMP
factors. However the behavior of variables and the mechanisms for collecting evidence are different
for the two algorithms (as summarized in the Gates paper), so we need to make conversions. Note
that the rules obey a consistency property, that if you split a variable into an EP copy and VMP
copy then the results are unchanged.

Let m
e/v
a→i(xi) be the ordinary EP/VMP message from factor fa to variable xi, computed from

modified incoming messages. Let m
e/v
i→a(xi) be the ordinary EP/VMP message from variable xi to

factor fa. The modified message from variable to factor will be me→v
i→a (xi) or mv→e

i→a (xi). The factor
sends its usual evidence message, but the evidence will be multiplied by a factor sia.

Suppose xi is an EP variable and fa is a stochastic VMP factor. The modified message is:

me→v
i→a (xi) = me

i→a(xi)m
v
a→i(xi) (121)

sia = exp

(
−
∑
xi

me→v
i→a (xi) logmv

a→i(xi)

)
(122)

Notice that if an EP variable is connected only to stochastic VMP factors, then it behaves equiva-
lently (in messages and evidence contribution) to a VMP variable.

If xi is an EP variable which parents a deterministic VMP factor, then the modified message is
the same as above. An EP variable cannot be the child of a deterministic VMP factor. It must be
treated as a derived VMP variable.

Suppose xi is a stochastic VMP variable and fa is an EP factor. The modified message is:

mv→e
i→a (xi) = mv

i→a(xi)/m
e
a→i(xi) (123)

sia = exp

(∑
xi

mv
i→a(xi) logme

a→i(xi)

)
(124)

Thus if a VMP variable is connected only to EP factors, it behaves equivalently (in messages and
evidence contribution) to an EP variable.

If xi is a derived VMP variable (a child of a deterministic VMP factor) and fa is an EP factor,
then the modified message is the same as above, using the definition of mv

i→a(xi) for derived VMP
variables.

References

Minka, T. (2005). Divergence measures and message passing (Technical Report MSR-TR-2005-173).
Microsoft Research Ltd.

12

