Search Results for

    Show / Hide Table of Contents

    Class VectorGaussianFromMeanAndVarianceOp

    Provides outgoing messages for SampleFromMeanAndVariance(Vector, PositiveDefiniteMatrix), given random arguments to the function.

    Inheritance
    Object
    VectorGaussianFromMeanAndVarianceOp
    Inherited Members
    Object.Equals(Object)
    Object.Equals(Object, Object)
    Object.GetHashCode()
    Object.GetType()
    Object.MemberwiseClone()
    Object.ReferenceEquals(Object, Object)
    Object.ToString()
    Namespace: Microsoft.ML.Probabilistic.Factors
    Assembly: Microsoft.ML.Probabilistic.dll
    Syntax
    [FactorMethod(typeof(VectorGaussian), "SampleFromMeanAndVariance", new Type[]{})]
    [Quality(QualityBand.Stable)]
    public static class VectorGaussianFromMeanAndVarianceOp

    Methods

    AverageLogFactor(VectorGaussian, VectorGaussian)

    Evidence message for VMP.

    Declaration
    public static double AverageLogFactor(VectorGaussian sample, VectorGaussian to_sample)
    Parameters
    Type Name Description
    VectorGaussian sample

    Incoming message from sample.

    VectorGaussian to_sample

    Outgoing message to sample.

    Returns
    Type Description
    Double

    Average of the factor's log-value across the given argument distributions.

    Remarks

    The formula for the result is sum_(sample) p(sample) log(factor(sample,mean,variance)). Adding up these values across all factors and variables gives the log-evidence estimate for VMP.

    AverageLogFactor(Vector, VectorGaussian, VectorGaussian)

    Evidence message for VMP.

    Declaration
    public static double AverageLogFactor(Vector sample, VectorGaussian mean, VectorGaussian to_mean)
    Parameters
    Type Name Description
    Vector sample

    Constant value for sample.

    VectorGaussian mean

    Incoming message from mean.

    VectorGaussian to_mean

    Outgoing message to mean.

    Returns
    Type Description
    Double

    Average of the factor's log-value across the given argument distributions.

    Remarks

    The formula for the result is sum_(mean) p(mean) log(factor(sample,mean,variance)). Adding up these values across all factors and variables gives the log-evidence estimate for VMP.

    AverageLogFactor(Vector, Vector, PositiveDefiniteMatrix)

    Evidence message for VMP.

    Declaration
    public static double AverageLogFactor(Vector sample, Vector mean, PositiveDefiniteMatrix variance)
    Parameters
    Type Name Description
    Vector sample

    Constant value for sample.

    Vector mean

    Constant value for mean.

    PositiveDefiniteMatrix variance

    Constant value for variance.

    Returns
    Type Description
    Double

    Average of the factor's log-value across the given argument distributions.

    Remarks

    The formula for the result is log(factor(sample,mean,variance)). Adding up these values across all factors and variables gives the log-evidence estimate for VMP.

    LogAverageFactor(VectorGaussian, VectorGaussian)

    Evidence message for EP.

    Declaration
    public static double LogAverageFactor(VectorGaussian sample, VectorGaussian to_sample)
    Parameters
    Type Name Description
    VectorGaussian sample

    Incoming message from sample.

    VectorGaussian to_sample

    Outgoing message to sample.

    Returns
    Type Description
    Double

    Logarithm of the factor's average value across the given argument distributions.

    Remarks

    The formula for the result is log(sum_(sample) p(sample) factor(sample,mean,variance)).

    LogAverageFactor(Vector, Vector, PositiveDefiniteMatrix)

    Evidence message for EP.

    Declaration
    public static double LogAverageFactor(Vector sample, Vector mean, PositiveDefiniteMatrix variance)
    Parameters
    Type Name Description
    Vector sample

    Constant value for sample.

    Vector mean

    Constant value for mean.

    PositiveDefiniteMatrix variance

    Constant value for variance.

    Returns
    Type Description
    Double

    Logarithm of the factor's average value across the given argument distributions.

    Remarks

    The formula for the result is log(factor(sample,mean,variance)).

    LogEvidenceRatio(VectorGaussian, VectorGaussian, PositiveDefiniteMatrix)

    Declaration
    public static double LogEvidenceRatio(VectorGaussian sample, VectorGaussian mean, PositiveDefiniteMatrix variance)
    Parameters
    Type Name Description
    VectorGaussian sample
    VectorGaussian mean
    PositiveDefiniteMatrix variance
    Returns
    Type Description
    Double

    LogEvidenceRatio(VectorGaussian, Vector, PositiveDefiniteMatrix)

    Evidence message for EP.

    Declaration
    public static double LogEvidenceRatio(VectorGaussian sample, Vector mean, PositiveDefiniteMatrix variance)
    Parameters
    Type Name Description
    VectorGaussian sample

    Incoming message from sample.

    Vector mean

    Constant value for mean.

    PositiveDefiniteMatrix variance

    Constant value for variance.

    Returns
    Type Description
    Double

    Logarithm of the factor's contribution the EP model evidence.

    Remarks

    The formula for the result is log(sum_(sample) p(sample) factor(sample,mean,variance) / sum_sample p(sample) messageTo(sample)). Adding up these values across all factors and variables gives the log-evidence estimate for EP.

    LogEvidenceRatio(Vector, VectorGaussian, PositiveDefiniteMatrix)

    Evidence message for EP.

    Declaration
    public static double LogEvidenceRatio(Vector sample, VectorGaussian mean, PositiveDefiniteMatrix variance)
    Parameters
    Type Name Description
    Vector sample

    Constant value for sample.

    VectorGaussian mean

    Incoming message from mean.

    PositiveDefiniteMatrix variance

    Constant value for variance.

    Returns
    Type Description
    Double

    Logarithm of the factor's contribution the EP model evidence.

    Remarks

    The formula for the result is log(sum_(mean) p(mean) factor(sample,mean,variance)). Adding up these values across all factors and variables gives the log-evidence estimate for EP.

    LogEvidenceRatio(Vector, Vector, PositiveDefiniteMatrix)

    Evidence message for EP.

    Declaration
    public static double LogEvidenceRatio(Vector sample, Vector mean, PositiveDefiniteMatrix variance)
    Parameters
    Type Name Description
    Vector sample

    Constant value for sample.

    Vector mean

    Constant value for mean.

    PositiveDefiniteMatrix variance

    Constant value for variance.

    Returns
    Type Description
    Double

    Logarithm of the factor's contribution the EP model evidence.

    Remarks

    The formula for the result is log(factor(sample,mean,variance)). Adding up these values across all factors and variables gives the log-evidence estimate for EP.

    MeanAverageConditional(VectorGaussian, PositiveDefiniteMatrix, VectorGaussian)

    Declaration
    public static VectorGaussian MeanAverageConditional(VectorGaussian sample, PositiveDefiniteMatrix variance, VectorGaussian result)
    Parameters
    Type Name Description
    VectorGaussian sample
    PositiveDefiniteMatrix variance
    VectorGaussian result
    Returns
    Type Description
    VectorGaussian

    MeanAverageConditional(Vector, PositiveDefiniteMatrix)

    EP message to mean.

    Declaration
    public static VectorGaussian MeanAverageConditional(Vector sample, PositiveDefiniteMatrix variance)
    Parameters
    Type Name Description
    Vector sample

    Constant value for sample.

    PositiveDefiniteMatrix variance

    Constant value for variance.

    Returns
    Type Description
    VectorGaussian

    The outgoing EP message to the mean argument.

    Remarks

    The outgoing message is the factor viewed as a function of mean conditioned on the given values.

    MeanAverageLogarithm(Vector, PositiveDefiniteMatrix)

    VMP message to mean.

    Declaration
    public static VectorGaussian MeanAverageLogarithm(Vector sample, PositiveDefiniteMatrix variance)
    Parameters
    Type Name Description
    Vector sample

    Constant value for sample.

    PositiveDefiniteMatrix variance

    Constant value for variance.

    Returns
    Type Description
    VectorGaussian

    The outgoing VMP message to the mean argument.

    Remarks

    The outgoing message is the factor viewed as a function of mean conditioned on the given values.

    SampleAverageConditional(VectorGaussian, PositiveDefiniteMatrix, VectorGaussian)

    Declaration
    public static VectorGaussian SampleAverageConditional(VectorGaussian mean, PositiveDefiniteMatrix variance, VectorGaussian result)
    Parameters
    Type Name Description
    VectorGaussian mean
    PositiveDefiniteMatrix variance
    VectorGaussian result
    Returns
    Type Description
    VectorGaussian

    SampleAverageConditional(Vector, PositiveDefiniteMatrix)

    EP message to sample.

    Declaration
    public static VectorGaussian SampleAverageConditional(Vector mean, PositiveDefiniteMatrix variance)
    Parameters
    Type Name Description
    Vector mean

    Constant value for mean.

    PositiveDefiniteMatrix variance

    Constant value for variance.

    Returns
    Type Description
    VectorGaussian

    The outgoing EP message to the sample argument.

    Remarks

    The outgoing message is the factor viewed as a function of sample conditioned on the given values.

    SampleAverageLogarithm(Vector, PositiveDefiniteMatrix)

    VMP message to sample.

    Declaration
    public static VectorGaussian SampleAverageLogarithm(Vector mean, PositiveDefiniteMatrix variance)
    Parameters
    Type Name Description
    Vector mean

    Constant value for mean.

    PositiveDefiniteMatrix variance

    Constant value for variance.

    Returns
    Type Description
    VectorGaussian

    The outgoing VMP message to the sample argument.

    Remarks

    The outgoing message is the factor viewed as a function of sample conditioned on the given values.

    In This Article
    Back to top Copyright © .NET Foundation. All rights reserved.