Class VectorGaussianFromMeanAndVarianceOp
Provides outgoing messages for SampleFromMeanAndVariance(Vector, PositiveDefiniteMatrix), given random arguments to the function.
Inherited Members
Namespace: Microsoft.ML.Probabilistic.Factors
Assembly: Microsoft.ML.Probabilistic.dll
Syntax
[FactorMethod(typeof(VectorGaussian), "SampleFromMeanAndVariance", new Type[]{})]
[Quality(QualityBand.Stable)]
public static class VectorGaussianFromMeanAndVarianceOp
Methods
AverageLogFactor(VectorGaussian, VectorGaussian)
Evidence message for VMP.
Declaration
public static double AverageLogFactor(VectorGaussian sample, VectorGaussian to_sample)
Parameters
Type | Name | Description |
---|---|---|
VectorGaussian | sample | Incoming message from |
VectorGaussian | to_sample | Outgoing message to |
Returns
Type | Description |
---|---|
Double | Average of the factor's log-value across the given argument distributions. |
Remarks
The formula for the result is sum_(sample) p(sample) log(factor(sample,mean,variance))
. Adding up these values across all factors and variables gives the log-evidence estimate for VMP.
AverageLogFactor(Vector, VectorGaussian, VectorGaussian)
Evidence message for VMP.
Declaration
public static double AverageLogFactor(Vector sample, VectorGaussian mean, VectorGaussian to_mean)
Parameters
Type | Name | Description |
---|---|---|
Vector | sample | Constant value for |
VectorGaussian | mean | Incoming message from |
VectorGaussian | to_mean | Outgoing message to |
Returns
Type | Description |
---|---|
Double | Average of the factor's log-value across the given argument distributions. |
Remarks
The formula for the result is sum_(mean) p(mean) log(factor(sample,mean,variance))
. Adding up these values across all factors and variables gives the log-evidence estimate for VMP.
AverageLogFactor(Vector, Vector, PositiveDefiniteMatrix)
Evidence message for VMP.
Declaration
public static double AverageLogFactor(Vector sample, Vector mean, PositiveDefiniteMatrix variance)
Parameters
Type | Name | Description |
---|---|---|
Vector | sample | Constant value for |
Vector | mean | Constant value for |
PositiveDefiniteMatrix | variance | Constant value for |
Returns
Type | Description |
---|---|
Double | Average of the factor's log-value across the given argument distributions. |
Remarks
The formula for the result is log(factor(sample,mean,variance))
. Adding up these values across all factors and variables gives the log-evidence estimate for VMP.
LogAverageFactor(VectorGaussian, VectorGaussian)
Evidence message for EP.
Declaration
public static double LogAverageFactor(VectorGaussian sample, VectorGaussian to_sample)
Parameters
Type | Name | Description |
---|---|---|
VectorGaussian | sample | Incoming message from |
VectorGaussian | to_sample | Outgoing message to |
Returns
Type | Description |
---|---|
Double | Logarithm of the factor's average value across the given argument distributions. |
Remarks
The formula for the result is log(sum_(sample) p(sample) factor(sample,mean,variance))
.
LogAverageFactor(Vector, Vector, PositiveDefiniteMatrix)
Evidence message for EP.
Declaration
public static double LogAverageFactor(Vector sample, Vector mean, PositiveDefiniteMatrix variance)
Parameters
Type | Name | Description |
---|---|---|
Vector | sample | Constant value for |
Vector | mean | Constant value for |
PositiveDefiniteMatrix | variance | Constant value for |
Returns
Type | Description |
---|---|
Double | Logarithm of the factor's average value across the given argument distributions. |
Remarks
The formula for the result is log(factor(sample,mean,variance))
.
LogEvidenceRatio(VectorGaussian, VectorGaussian, PositiveDefiniteMatrix)
Declaration
public static double LogEvidenceRatio(VectorGaussian sample, VectorGaussian mean, PositiveDefiniteMatrix variance)
Parameters
Type | Name | Description |
---|---|---|
VectorGaussian | sample | |
VectorGaussian | mean | |
PositiveDefiniteMatrix | variance |
Returns
Type | Description |
---|---|
Double |
LogEvidenceRatio(VectorGaussian, Vector, PositiveDefiniteMatrix)
Evidence message for EP.
Declaration
public static double LogEvidenceRatio(VectorGaussian sample, Vector mean, PositiveDefiniteMatrix variance)
Parameters
Type | Name | Description |
---|---|---|
VectorGaussian | sample | Incoming message from |
Vector | mean | Constant value for |
PositiveDefiniteMatrix | variance | Constant value for |
Returns
Type | Description |
---|---|
Double | Logarithm of the factor's contribution the EP model evidence. |
Remarks
The formula for the result is log(sum_(sample) p(sample) factor(sample,mean,variance) / sum_sample p(sample) messageTo(sample))
. Adding up these values across all factors and variables gives the log-evidence estimate for EP.
LogEvidenceRatio(Vector, VectorGaussian, PositiveDefiniteMatrix)
Evidence message for EP.
Declaration
public static double LogEvidenceRatio(Vector sample, VectorGaussian mean, PositiveDefiniteMatrix variance)
Parameters
Type | Name | Description |
---|---|---|
Vector | sample | Constant value for |
VectorGaussian | mean | Incoming message from |
PositiveDefiniteMatrix | variance | Constant value for |
Returns
Type | Description |
---|---|
Double | Logarithm of the factor's contribution the EP model evidence. |
Remarks
The formula for the result is log(sum_(mean) p(mean) factor(sample,mean,variance))
. Adding up these values across all factors and variables gives the log-evidence estimate for EP.
LogEvidenceRatio(Vector, Vector, PositiveDefiniteMatrix)
Evidence message for EP.
Declaration
public static double LogEvidenceRatio(Vector sample, Vector mean, PositiveDefiniteMatrix variance)
Parameters
Type | Name | Description |
---|---|---|
Vector | sample | Constant value for |
Vector | mean | Constant value for |
PositiveDefiniteMatrix | variance | Constant value for |
Returns
Type | Description |
---|---|
Double | Logarithm of the factor's contribution the EP model evidence. |
Remarks
The formula for the result is log(factor(sample,mean,variance))
. Adding up these values across all factors and variables gives the log-evidence estimate for EP.
MeanAverageConditional(VectorGaussian, PositiveDefiniteMatrix, VectorGaussian)
Declaration
public static VectorGaussian MeanAverageConditional(VectorGaussian sample, PositiveDefiniteMatrix variance, VectorGaussian result)
Parameters
Type | Name | Description |
---|---|---|
VectorGaussian | sample | |
PositiveDefiniteMatrix | variance | |
VectorGaussian | result |
Returns
Type | Description |
---|---|
VectorGaussian |
MeanAverageConditional(Vector, PositiveDefiniteMatrix)
EP message to mean
.
Declaration
public static VectorGaussian MeanAverageConditional(Vector sample, PositiveDefiniteMatrix variance)
Parameters
Type | Name | Description |
---|---|---|
Vector | sample | Constant value for |
PositiveDefiniteMatrix | variance | Constant value for |
Returns
Type | Description |
---|---|
VectorGaussian | The outgoing EP message to the |
Remarks
The outgoing message is the factor viewed as a function of mean
conditioned on the given values.
MeanAverageLogarithm(Vector, PositiveDefiniteMatrix)
VMP message to mean
.
Declaration
public static VectorGaussian MeanAverageLogarithm(Vector sample, PositiveDefiniteMatrix variance)
Parameters
Type | Name | Description |
---|---|---|
Vector | sample | Constant value for |
PositiveDefiniteMatrix | variance | Constant value for |
Returns
Type | Description |
---|---|
VectorGaussian | The outgoing VMP message to the |
Remarks
The outgoing message is the factor viewed as a function of mean
conditioned on the given values.
SampleAverageConditional(VectorGaussian, PositiveDefiniteMatrix, VectorGaussian)
Declaration
public static VectorGaussian SampleAverageConditional(VectorGaussian mean, PositiveDefiniteMatrix variance, VectorGaussian result)
Parameters
Type | Name | Description |
---|---|---|
VectorGaussian | mean | |
PositiveDefiniteMatrix | variance | |
VectorGaussian | result |
Returns
Type | Description |
---|---|
VectorGaussian |
SampleAverageConditional(Vector, PositiveDefiniteMatrix)
EP message to sample
.
Declaration
public static VectorGaussian SampleAverageConditional(Vector mean, PositiveDefiniteMatrix variance)
Parameters
Type | Name | Description |
---|---|---|
Vector | mean | Constant value for |
PositiveDefiniteMatrix | variance | Constant value for |
Returns
Type | Description |
---|---|
VectorGaussian | The outgoing EP message to the |
Remarks
The outgoing message is the factor viewed as a function of sample
conditioned on the given values.
SampleAverageLogarithm(Vector, PositiveDefiniteMatrix)
VMP message to sample
.
Declaration
public static VectorGaussian SampleAverageLogarithm(Vector mean, PositiveDefiniteMatrix variance)
Parameters
Type | Name | Description |
---|---|---|
Vector | mean | Constant value for |
PositiveDefiniteMatrix | variance | Constant value for |
Returns
Type | Description |
---|---|
VectorGaussian | The outgoing VMP message to the |
Remarks
The outgoing message is the factor viewed as a function of sample
conditioned on the given values.