Class VariablePointOp_RpropGamma
Inherited Members
Namespace: Microsoft.ML.Probabilistic.Factors
Assembly: Microsoft.ML.Probabilistic.dll
Syntax
[FactorMethod(typeof(Clone), "VariablePoint<>", new Type[]{}, Default = true)]
[Buffers(new string[]{"buffer0"})]
[Quality(QualityBand.Preview)]
public class VariablePointOp_RpropGamma : VariablePointOpBase
Fields
UseMean
Declaration
public static bool UseMean
Field Value
| Type | Description |
|---|---|
| Boolean |
Methods
Buffer0(Gamma, Gamma, Gamma, RpropBufferData)
Declaration
[SkipIfAllUniform]
public static RpropBufferData Buffer0(Gamma use, Gamma def, Gamma to_marginal, RpropBufferData buffer0)
Parameters
| Type | Name | Description |
|---|---|---|
| Gamma | use | |
| Gamma | def | |
| Gamma | to_marginal | |
| RpropBufferData | buffer0 |
Returns
| Type | Description |
|---|---|
| RpropBufferData |
Buffer0Init()
Declaration
public static RpropBufferData Buffer0Init()
Returns
| Type | Description |
|---|---|
| RpropBufferData |
MarginalAverageConditional(Gamma, Gamma, RpropBufferData, Gamma)
EP message to marginal.
Declaration
public static Gamma MarginalAverageConditional(Gamma use, Gamma def, RpropBufferData buffer0, Gamma result)
Parameters
| Type | Name | Description |
|---|---|---|
| Gamma | use | Incoming message from |
| Gamma | def | Incoming message from |
| RpropBufferData | buffer0 | Buffer |
| Gamma | result | Modified to contain the outgoing message. |
Returns
| Type | Description |
|---|---|
| Gamma |
|
Remarks
The outgoing message is a distribution matching the moments of marginal as the random arguments are varied. The formula is proj[p(marginal) sum_(use,def) p(use,def) factor(use,def,marginal)]/p(marginal).