Search Results for

    Show / Hide Table of Contents

    Class SparseGaussianListOp

    Provides outgoing messages for Sample(ISparseList<Double>, ISparseList<Double>), given random arguments to the function.

    Inheritance
    Object
    SparseGaussianListOp
    Inherited Members
    Object.Equals(Object)
    Object.Equals(Object, Object)
    Object.GetHashCode()
    Object.GetType()
    Object.MemberwiseClone()
    Object.ReferenceEquals(Object, Object)
    Object.ToString()
    Namespace: Microsoft.ML.Probabilistic.Factors
    Assembly: Microsoft.ML.Probabilistic.dll
    Syntax
    [FactorMethod(new string[]{"sample", "mean", "precision"}, typeof(SparseGaussianList), "Sample", new Type[]{typeof(ISparseList<double>), typeof(ISparseList<double>)})]
    [Quality(QualityBand.Stable)]
    public static class SparseGaussianListOp

    Methods

    AverageLogFactor(ISparseList<Double>, ISparseList<Double>, ISparseList<Double>)

    Evidence message for VMP.

    Declaration
    public static double AverageLogFactor(ISparseList<double> sample, ISparseList<double> mean, ISparseList<double> precision)
    Parameters
    Type Name Description
    ISparseList<Double> sample

    Constant value for sample.

    ISparseList<Double> mean

    Constant value for means.

    ISparseList<Double> precision

    Constant value for precs.

    Returns
    Type Description
    Double

    Average of the factor's log-value across the given argument distributions.

    Remarks

    The formula for the result is log(factor(sample,means,precs)). Adding up these values across all factors and variables gives the log-evidence estimate for VMP.

    AverageLogFactor(ISparseList<Double>, ISparseList<Double>, SparseGammaList)

    Evidence message for VMP.

    Declaration
    public static double AverageLogFactor(ISparseList<double> sample, ISparseList<double> mean, SparseGammaList precision)
    Parameters
    Type Name Description
    ISparseList<Double> sample

    Constant value for sample.

    ISparseList<Double> mean

    Constant value for means.

    SparseGammaList precision

    Incoming message from precs. Must be a proper distribution. If any element is uniform, the result will be uniform.

    Returns
    Type Description
    Double

    Average of the factor's log-value across the given argument distributions.

    Remarks

    The formula for the result is sum_(precs) p(precs) log(factor(sample,means,precs)). Adding up these values across all factors and variables gives the log-evidence estimate for VMP.

    Exceptions
    Type Condition
    ImproperMessageException

    precision is not a proper distribution.

    AverageLogFactor(ISparseList<Double>, SparseGaussianList, ISparseList<Double>)

    Evidence message for VMP.

    Declaration
    public static double AverageLogFactor(ISparseList<double> sample, SparseGaussianList mean, ISparseList<double> precision)
    Parameters
    Type Name Description
    ISparseList<Double> sample

    Constant value for sample.

    SparseGaussianList mean

    Incoming message from means. Must be a proper distribution. If any element is uniform, the result will be uniform.

    ISparseList<Double> precision

    Constant value for precs.

    Returns
    Type Description
    Double

    Average of the factor's log-value across the given argument distributions.

    Remarks

    The formula for the result is sum_(means) p(means) log(factor(sample,means,precs)). Adding up these values across all factors and variables gives the log-evidence estimate for VMP.

    Exceptions
    Type Condition
    ImproperMessageException

    mean is not a proper distribution.

    AverageLogFactor(ISparseList<Double>, SparseGaussianList, SparseGammaList)

    Evidence message for VMP.

    Declaration
    public static double AverageLogFactor(ISparseList<double> sample, SparseGaussianList mean, SparseGammaList precision)
    Parameters
    Type Name Description
    ISparseList<Double> sample

    Constant value for sample.

    SparseGaussianList mean

    Incoming message from means. Must be a proper distribution. If any element is uniform, the result will be uniform.

    SparseGammaList precision

    Incoming message from precs. Must be a proper distribution. If any element is uniform, the result will be uniform.

    Returns
    Type Description
    Double

    Average of the factor's log-value across the given argument distributions.

    Remarks

    The formula for the result is sum_(means,precs) p(means,precs) log(factor(sample,means,precs)). Adding up these values across all factors and variables gives the log-evidence estimate for VMP.

    Exceptions
    Type Condition
    ImproperMessageException

    mean is not a proper distribution.

    ImproperMessageException

    precision is not a proper distribution.

    AverageLogFactor(SparseGaussianList, ISparseList<Double>, ISparseList<Double>)

    Evidence message for VMP.

    Declaration
    public static double AverageLogFactor(SparseGaussianList sample, ISparseList<double> mean, ISparseList<double> precision)
    Parameters
    Type Name Description
    SparseGaussianList sample

    Incoming message from sample. Must be a proper distribution. If any element is uniform, the result will be uniform.

    ISparseList<Double> mean

    Constant value for means.

    ISparseList<Double> precision

    Constant value for precs.

    Returns
    Type Description
    Double

    Average of the factor's log-value across the given argument distributions.

    Remarks

    The formula for the result is sum_(sample) p(sample) log(factor(sample,means,precs)). Adding up these values across all factors and variables gives the log-evidence estimate for VMP.

    Exceptions
    Type Condition
    ImproperMessageException

    sample is not a proper distribution.

    AverageLogFactor(SparseGaussianList, ISparseList<Double>, SparseGammaList)

    Evidence message for VMP.

    Declaration
    public static double AverageLogFactor(SparseGaussianList sample, ISparseList<double> mean, SparseGammaList precision)
    Parameters
    Type Name Description
    SparseGaussianList sample

    Incoming message from sample. Must be a proper distribution. If any element is uniform, the result will be uniform.

    ISparseList<Double> mean

    Constant value for means.

    SparseGammaList precision

    Incoming message from precs. Must be a proper distribution. If any element is uniform, the result will be uniform.

    Returns
    Type Description
    Double

    Average of the factor's log-value across the given argument distributions.

    Remarks

    The formula for the result is sum_(sample,precs) p(sample,precs) log(factor(sample,means,precs)). Adding up these values across all factors and variables gives the log-evidence estimate for VMP.

    Exceptions
    Type Condition
    ImproperMessageException

    sample is not a proper distribution.

    ImproperMessageException

    precision is not a proper distribution.

    AverageLogFactor(SparseGaussianList, SparseGaussianList, ISparseList<Double>)

    Evidence message for VMP.

    Declaration
    public static double AverageLogFactor(SparseGaussianList sample, SparseGaussianList mean, ISparseList<double> precision)
    Parameters
    Type Name Description
    SparseGaussianList sample

    Incoming message from sample. Must be a proper distribution. If any element is uniform, the result will be uniform.

    SparseGaussianList mean

    Incoming message from means. Must be a proper distribution. If any element is uniform, the result will be uniform.

    ISparseList<Double> precision

    Constant value for precs.

    Returns
    Type Description
    Double

    Average of the factor's log-value across the given argument distributions.

    Remarks

    The formula for the result is sum_(sample,means) p(sample,means) log(factor(sample,means,precs)). Adding up these values across all factors and variables gives the log-evidence estimate for VMP.

    Exceptions
    Type Condition
    ImproperMessageException

    sample is not a proper distribution.

    ImproperMessageException

    mean is not a proper distribution.

    AverageLogFactor(SparseGaussianList, SparseGaussianList, SparseGammaList)

    Evidence message for VMP.

    Declaration
    public static double AverageLogFactor(SparseGaussianList sample, SparseGaussianList mean, SparseGammaList precision)
    Parameters
    Type Name Description
    SparseGaussianList sample

    Incoming message from sample. Must be a proper distribution. If any element is uniform, the result will be uniform.

    SparseGaussianList mean

    Incoming message from means. Must be a proper distribution. If any element is uniform, the result will be uniform.

    SparseGammaList precision

    Incoming message from precs. Must be a proper distribution. If any element is uniform, the result will be uniform.

    Returns
    Type Description
    Double

    Average of the factor's log-value across the given argument distributions.

    Remarks

    The formula for the result is sum_(sample,means,precs) p(sample,means,precs) log(factor(sample,means,precs)). Adding up these values across all factors and variables gives the log-evidence estimate for VMP.

    Exceptions
    Type Condition
    ImproperMessageException

    sample is not a proper distribution.

    ImproperMessageException

    mean is not a proper distribution.

    ImproperMessageException

    precision is not a proper distribution.

    LogAverageFactor(ISparseList<Double>, ISparseList<Double>, ISparseList<Double>)

    Evidence message for EP.

    Declaration
    public static double LogAverageFactor(ISparseList<double> sample, ISparseList<double> mean, ISparseList<double> precision)
    Parameters
    Type Name Description
    ISparseList<Double> sample

    Constant value for sample.

    ISparseList<Double> mean

    Constant value for means.

    ISparseList<Double> precision

    Constant value for precs.

    Returns
    Type Description
    Double

    Logarithm of the factor's average value across the given argument distributions.

    Remarks

    The formula for the result is log(factor(sample,means,precs)).

    LogAverageFactor(ISparseList<Double>, ISparseList<Double>, SparseGammaList)

    Evidence message for EP.

    Declaration
    public static double LogAverageFactor(ISparseList<double> sample, ISparseList<double> mean, SparseGammaList precision)
    Parameters
    Type Name Description
    ISparseList<Double> sample

    Constant value for sample.

    ISparseList<Double> mean

    Constant value for means.

    SparseGammaList precision

    Incoming message from precs. Must be a proper distribution. If any element is uniform, the result will be uniform.

    Returns
    Type Description
    Double

    Logarithm of the factor's average value across the given argument distributions.

    Remarks

    The formula for the result is log(sum_(precs) p(precs) factor(sample,means,precs)).

    Exceptions
    Type Condition
    ImproperMessageException

    precision is not a proper distribution.

    LogAverageFactor(ISparseList<Double>, SparseGaussianList, ISparseList<Double>)

    Evidence message for EP.

    Declaration
    public static double LogAverageFactor(ISparseList<double> sample, SparseGaussianList mean, ISparseList<double> precision)
    Parameters
    Type Name Description
    ISparseList<Double> sample

    Constant value for sample.

    SparseGaussianList mean

    Incoming message from means. Must be a proper distribution. If any element is uniform, the result will be uniform.

    ISparseList<Double> precision

    Constant value for precs.

    Returns
    Type Description
    Double

    Logarithm of the factor's average value across the given argument distributions.

    Remarks

    The formula for the result is log(sum_(means) p(means) factor(sample,means,precs)).

    Exceptions
    Type Condition
    ImproperMessageException

    mean is not a proper distribution.

    LogAverageFactor(ISparseList<Double>, SparseGaussianList, SparseGammaList, SparseGammaList)

    Evidence message for EP.

    Declaration
    public static double LogAverageFactor(ISparseList<double> sample, SparseGaussianList mean, SparseGammaList precision, SparseGammaList to_precision)
    Parameters
    Type Name Description
    ISparseList<Double> sample

    Constant value for sample.

    SparseGaussianList mean

    Incoming message from means. Must be a proper distribution. If any element is uniform, the result will be uniform.

    SparseGammaList precision

    Incoming message from precs. Must be a proper distribution. If any element is uniform, the result will be uniform.

    SparseGammaList to_precision

    Previous outgoing message to precision.

    Returns
    Type Description
    Double

    Logarithm of the factor's average value across the given argument distributions.

    Remarks

    The formula for the result is log(sum_(means,precs) p(means,precs) factor(sample,means,precs)).

    Exceptions
    Type Condition
    ImproperMessageException

    mean is not a proper distribution.

    ImproperMessageException

    precision is not a proper distribution.

    LogAverageFactor(SparseGaussianList, ISparseList<Double>, ISparseList<Double>)

    Evidence message for EP.

    Declaration
    public static double LogAverageFactor(SparseGaussianList sample, ISparseList<double> mean, ISparseList<double> precision)
    Parameters
    Type Name Description
    SparseGaussianList sample

    Incoming message from sample. Must be a proper distribution. If any element is uniform, the result will be uniform.

    ISparseList<Double> mean

    Constant value for means.

    ISparseList<Double> precision

    Constant value for precs.

    Returns
    Type Description
    Double

    Logarithm of the factor's average value across the given argument distributions.

    Remarks

    The formula for the result is log(sum_(sample) p(sample) factor(sample,means,precs)).

    Exceptions
    Type Condition
    ImproperMessageException

    sample is not a proper distribution.

    LogAverageFactor(SparseGaussianList, ISparseList<Double>, SparseGammaList, SparseGammaList)

    Evidence message for EP.

    Declaration
    public static double LogAverageFactor(SparseGaussianList sample, ISparseList<double> mean, SparseGammaList precision, SparseGammaList to_precision)
    Parameters
    Type Name Description
    SparseGaussianList sample

    Incoming message from sample. Must be a proper distribution. If any element is uniform, the result will be uniform.

    ISparseList<Double> mean

    Constant value for means.

    SparseGammaList precision

    Incoming message from precs. Must be a proper distribution. If any element is uniform, the result will be uniform.

    SparseGammaList to_precision

    Previous outgoing message to precision.

    Returns
    Type Description
    Double

    Logarithm of the factor's average value across the given argument distributions.

    Remarks

    The formula for the result is log(sum_(sample,precs) p(sample,precs) factor(sample,means,precs)).

    Exceptions
    Type Condition
    ImproperMessageException

    sample is not a proper distribution.

    ImproperMessageException

    precision is not a proper distribution.

    LogAverageFactor(SparseGaussianList, SparseGaussianList, ISparseList<Double>)

    Evidence message for EP.

    Declaration
    public static double LogAverageFactor(SparseGaussianList sample, SparseGaussianList mean, ISparseList<double> precision)
    Parameters
    Type Name Description
    SparseGaussianList sample

    Incoming message from sample. Must be a proper distribution. If any element is uniform, the result will be uniform.

    SparseGaussianList mean

    Incoming message from means. Must be a proper distribution. If any element is uniform, the result will be uniform.

    ISparseList<Double> precision

    Constant value for precs.

    Returns
    Type Description
    Double

    Logarithm of the factor's average value across the given argument distributions.

    Remarks

    The formula for the result is log(sum_(sample,means) p(sample,means) factor(sample,means,precs)).

    Exceptions
    Type Condition
    ImproperMessageException

    sample is not a proper distribution.

    ImproperMessageException

    mean is not a proper distribution.

    LogAverageFactor(SparseGaussianList, SparseGaussianList, SparseGammaList, SparseGammaList)

    Evidence message for EP.

    Declaration
    public static double LogAverageFactor(SparseGaussianList sample, SparseGaussianList mean, SparseGammaList precision, SparseGammaList to_precision)
    Parameters
    Type Name Description
    SparseGaussianList sample

    Incoming message from sample. Must be a proper distribution. If any element is uniform, the result will be uniform.

    SparseGaussianList mean

    Incoming message from means. Must be a proper distribution. If any element is uniform, the result will be uniform.

    SparseGammaList precision

    Incoming message from precs. Must be a proper distribution. If any element is uniform, the result will be uniform.

    SparseGammaList to_precision

    Previous outgoing message to precision.

    Returns
    Type Description
    Double

    Logarithm of the factor's average value across the given argument distributions.

    Remarks

    The formula for the result is log(sum_(sample,means,precs) p(sample,means,precs) factor(sample,means,precs)).

    Exceptions
    Type Condition
    ImproperMessageException

    sample is not a proper distribution.

    ImproperMessageException

    mean is not a proper distribution.

    ImproperMessageException

    precision is not a proper distribution.

    LogEvidenceRatio(ISparseList<Double>, ISparseList<Double>, ISparseList<Double>)

    Evidence message for EP.

    Declaration
    public static double LogEvidenceRatio(ISparseList<double> sample, ISparseList<double> mean, ISparseList<double> precision)
    Parameters
    Type Name Description
    ISparseList<Double> sample

    Constant value for sample.

    ISparseList<Double> mean

    Constant value for means.

    ISparseList<Double> precision

    Constant value for precs.

    Returns
    Type Description
    Double

    Logarithm of the factor's contribution the EP model evidence.

    Remarks

    The formula for the result is log(factor(sample,means,precs)). Adding up these values across all factors and variables gives the log-evidence estimate for EP.

    LogEvidenceRatio(ISparseList<Double>, ISparseList<Double>, SparseGammaList)

    Evidence message for EP.

    Declaration
    public static double LogEvidenceRatio(ISparseList<double> sample, ISparseList<double> mean, SparseGammaList precision)
    Parameters
    Type Name Description
    ISparseList<Double> sample

    Constant value for sample.

    ISparseList<Double> mean

    Constant value for means.

    SparseGammaList precision

    Incoming message from precs. Must be a proper distribution. If any element is uniform, the result will be uniform.

    Returns
    Type Description
    Double

    Logarithm of the factor's contribution the EP model evidence.

    Remarks

    The formula for the result is log(sum_(precs) p(precs) factor(sample,means,precs)). Adding up these values across all factors and variables gives the log-evidence estimate for EP.

    Exceptions
    Type Condition
    ImproperMessageException

    precision is not a proper distribution.

    LogEvidenceRatio(ISparseList<Double>, SparseGaussianList, ISparseList<Double>)

    Evidence message for EP.

    Declaration
    public static double LogEvidenceRatio(ISparseList<double> sample, SparseGaussianList mean, ISparseList<double> precision)
    Parameters
    Type Name Description
    ISparseList<Double> sample

    Constant value for sample.

    SparseGaussianList mean

    Incoming message from means.

    ISparseList<Double> precision

    Constant value for precs.

    Returns
    Type Description
    Double

    Logarithm of the factor's contribution the EP model evidence.

    Remarks

    The formula for the result is log(sum_(means) p(means) factor(sample,means,precs)). Adding up these values across all factors and variables gives the log-evidence estimate for EP.

    LogEvidenceRatio(ISparseList<Double>, SparseGaussianList, SparseGammaList, SparseGammaList)

    Evidence message for EP.

    Declaration
    public static double LogEvidenceRatio(ISparseList<double> sample, SparseGaussianList mean, SparseGammaList precision, SparseGammaList to_precision)
    Parameters
    Type Name Description
    ISparseList<Double> sample

    Constant value for sample.

    SparseGaussianList mean

    Incoming message from means. Must be a proper distribution. If any element is uniform, the result will be uniform.

    SparseGammaList precision

    Incoming message from precs. Must be a proper distribution. If any element is uniform, the result will be uniform.

    SparseGammaList to_precision

    Previous outgoing message to precision.

    Returns
    Type Description
    Double

    Logarithm of the factor's contribution the EP model evidence.

    Remarks

    The formula for the result is log(sum_(means,precs) p(means,precs) factor(sample,means,precs)). Adding up these values across all factors and variables gives the log-evidence estimate for EP.

    Exceptions
    Type Condition
    ImproperMessageException

    mean is not a proper distribution.

    ImproperMessageException

    precision is not a proper distribution.

    LogEvidenceRatio(SparseGaussianList, ISparseList<Double>, ISparseList<Double>)

    Evidence message for EP.

    Declaration
    public static double LogEvidenceRatio(SparseGaussianList sample, ISparseList<double> mean, ISparseList<double> precision)
    Parameters
    Type Name Description
    SparseGaussianList sample

    Incoming message from sample.

    ISparseList<Double> mean

    Constant value for means.

    ISparseList<Double> precision

    Constant value for precs.

    Returns
    Type Description
    Double

    Logarithm of the factor's contribution the EP model evidence.

    Remarks

    The formula for the result is log(sum_(sample) p(sample) factor(sample,means,precs) / sum_sample p(sample) messageTo(sample)). Adding up these values across all factors and variables gives the log-evidence estimate for EP.

    LogEvidenceRatio(SparseGaussianList, ISparseList<Double>, SparseGammaList, SparseGaussianList, SparseGammaList)

    Evidence message for EP.

    Declaration
    public static double LogEvidenceRatio(SparseGaussianList sample, ISparseList<double> mean, SparseGammaList precision, SparseGaussianList to_sample, SparseGammaList to_precision)
    Parameters
    Type Name Description
    SparseGaussianList sample

    Incoming message from sample. Must be a proper distribution. If any element is uniform, the result will be uniform.

    ISparseList<Double> mean

    Constant value for means.

    SparseGammaList precision

    Incoming message from precs. Must be a proper distribution. If any element is uniform, the result will be uniform.

    SparseGaussianList to_sample

    Outgoing message to sample.

    SparseGammaList to_precision

    Previous outgoing message to precision.

    Returns
    Type Description
    Double

    Logarithm of the factor's contribution the EP model evidence.

    Remarks

    The formula for the result is log(sum_(sample,precs) p(sample,precs) factor(sample,means,precs) / sum_sample p(sample) messageTo(sample)). Adding up these values across all factors and variables gives the log-evidence estimate for EP.

    Exceptions
    Type Condition
    ImproperMessageException

    sample is not a proper distribution.

    ImproperMessageException

    precision is not a proper distribution.

    LogEvidenceRatio(SparseGaussianList, SparseGaussianList, ISparseList<Double>)

    Evidence message for EP.

    Declaration
    public static double LogEvidenceRatio(SparseGaussianList sample, SparseGaussianList mean, ISparseList<double> precision)
    Parameters
    Type Name Description
    SparseGaussianList sample

    Incoming message from sample.

    SparseGaussianList mean

    Incoming message from means.

    ISparseList<Double> precision

    Constant value for precs.

    Returns
    Type Description
    Double

    Logarithm of the factor's contribution the EP model evidence.

    Remarks

    The formula for the result is log(sum_(sample,means) p(sample,means) factor(sample,means,precs) / sum_sample p(sample) messageTo(sample)). Adding up these values across all factors and variables gives the log-evidence estimate for EP.

    LogEvidenceRatio(SparseGaussianList, SparseGaussianList, SparseGammaList, SparseGaussianList, SparseGammaList)

    Evidence message for EP.

    Declaration
    public static double LogEvidenceRatio(SparseGaussianList sample, SparseGaussianList mean, SparseGammaList precision, SparseGaussianList to_sample, SparseGammaList to_precision)
    Parameters
    Type Name Description
    SparseGaussianList sample

    Incoming message from sample. Must be a proper distribution. If any element is uniform, the result will be uniform.

    SparseGaussianList mean

    Incoming message from means. Must be a proper distribution. If any element is uniform, the result will be uniform.

    SparseGammaList precision

    Incoming message from precs. Must be a proper distribution. If any element is uniform, the result will be uniform.

    SparseGaussianList to_sample

    Outgoing message to sample.

    SparseGammaList to_precision

    Previous outgoing message to precision.

    Returns
    Type Description
    Double

    Logarithm of the factor's contribution the EP model evidence.

    Remarks

    The formula for the result is log(sum_(sample,means,precs) p(sample,means,precs) factor(sample,means,precs) / sum_sample p(sample) messageTo(sample)). Adding up these values across all factors and variables gives the log-evidence estimate for EP.

    Exceptions
    Type Condition
    ImproperMessageException

    sample is not a proper distribution.

    ImproperMessageException

    mean is not a proper distribution.

    ImproperMessageException

    precision is not a proper distribution.

    MeanAverageConditional(ISparseList<Double>, ISparseList<Double>, SparseGaussianList)

    EP message to means.

    Declaration
    public static SparseGaussianList MeanAverageConditional(ISparseList<double> sample, ISparseList<double> precision, SparseGaussianList result)
    Parameters
    Type Name Description
    ISparseList<Double> sample

    Constant value for sample.

    ISparseList<Double> precision

    Constant value for precs.

    SparseGaussianList result

    Modified to contain the outgoing message.

    Returns
    Type Description
    SparseGaussianList

    result

    Remarks

    The outgoing message is the factor viewed as a function of means conditioned on the given values.

    MeanAverageConditional(ISparseList<Double>, SparseGaussianList, SparseGammaList, SparseGammaList, SparseGaussianList)

    EP message to means.

    Declaration
    public static SparseGaussianList MeanAverageConditional(ISparseList<double> sample, SparseGaussianList mean, SparseGammaList precision, SparseGammaList to_precision, SparseGaussianList result)
    Parameters
    Type Name Description
    ISparseList<Double> sample

    Constant value for sample.

    SparseGaussianList mean

    Incoming message from means. Must be a proper distribution. If any element is uniform, the result will be uniform.

    SparseGammaList precision

    Incoming message from precs. Must be a proper distribution. If any element is uniform, the result will be uniform.

    SparseGammaList to_precision

    Previous outgoing message to precision.

    SparseGaussianList result

    Modified to contain the outgoing message.

    Returns
    Type Description
    SparseGaussianList

    result

    Remarks

    The outgoing message is a distribution matching the moments of means as the random arguments are varied. The formula is proj[p(means) sum_(precs) p(precs) factor(sample,means,precs)]/p(means).

    Exceptions
    Type Condition
    ImproperMessageException

    mean is not a proper distribution.

    ImproperMessageException

    precision is not a proper distribution.

    MeanAverageConditional(SparseGaussianList, ISparseList<Double>, SparseGaussianList)

    EP message to means.

    Declaration
    public static SparseGaussianList MeanAverageConditional(SparseGaussianList sample, ISparseList<double> precision, SparseGaussianList result)
    Parameters
    Type Name Description
    SparseGaussianList sample

    Incoming message from sample. Must be a proper distribution. If any element is uniform, the result will be uniform.

    ISparseList<Double> precision

    Constant value for precs.

    SparseGaussianList result

    Modified to contain the outgoing message.

    Returns
    Type Description
    SparseGaussianList

    result

    Remarks

    The outgoing message is a distribution matching the moments of means as the random arguments are varied. The formula is proj[p(means) sum_(sample) p(sample) factor(sample,means,precs)]/p(means).

    Exceptions
    Type Condition
    ImproperMessageException

    sample is not a proper distribution.

    MeanAverageConditional(SparseGaussianList, SparseGaussianList, SparseGammaList, SparseGammaList, SparseGaussianList)

    EP message to means.

    Declaration
    public static SparseGaussianList MeanAverageConditional(SparseGaussianList sample, SparseGaussianList mean, SparseGammaList precision, SparseGammaList to_precision, SparseGaussianList result)
    Parameters
    Type Name Description
    SparseGaussianList sample

    Incoming message from sample. Must be a proper distribution. If any element is uniform, the result will be uniform.

    SparseGaussianList mean

    Incoming message from means. Must be a proper distribution. If any element is uniform, the result will be uniform.

    SparseGammaList precision

    Incoming message from precs. Must be a proper distribution. If any element is uniform, the result will be uniform.

    SparseGammaList to_precision

    Previous outgoing message to precision.

    SparseGaussianList result

    Modified to contain the outgoing message.

    Returns
    Type Description
    SparseGaussianList

    result

    Remarks

    The outgoing message is a distribution matching the moments of means as the random arguments are varied. The formula is proj[p(means) sum_(sample,precs) p(sample,precs) factor(sample,means,precs)]/p(means).

    Exceptions
    Type Condition
    ImproperMessageException

    sample is not a proper distribution.

    ImproperMessageException

    mean is not a proper distribution.

    ImproperMessageException

    precision is not a proper distribution.

    MeanAverageLogarithm(ISparseList<Double>, ISparseList<Double>, SparseGaussianList)

    VMP message to means.

    Declaration
    public static SparseGaussianList MeanAverageLogarithm(ISparseList<double> sample, ISparseList<double> precision, SparseGaussianList result)
    Parameters
    Type Name Description
    ISparseList<Double> sample

    Constant value for sample.

    ISparseList<Double> precision

    Constant value for precs.

    SparseGaussianList result

    Modified to contain the outgoing message.

    Returns
    Type Description
    SparseGaussianList

    result

    Remarks

    The outgoing message is the factor viewed as a function of means conditioned on the given values.

    MeanAverageLogarithm(ISparseList<Double>, SparseGammaList, SparseGaussianList)

    VMP message to means.

    Declaration
    public static SparseGaussianList MeanAverageLogarithm(ISparseList<double> sample, SparseGammaList precision, SparseGaussianList result)
    Parameters
    Type Name Description
    ISparseList<Double> sample

    Constant value for sample.

    SparseGammaList precision

    Incoming message from precs. Must be a proper distribution. If any element is uniform, the result will be uniform.

    SparseGaussianList result

    Modified to contain the outgoing message.

    Returns
    Type Description
    SparseGaussianList

    result

    Remarks

    The outgoing message is the exponential of the average log-factor value, where the average is over all arguments except means. The formula is exp(sum_(precs) p(precs) log(factor(sample,means,precs))).

    Exceptions
    Type Condition
    ImproperMessageException

    precision is not a proper distribution.

    MeanAverageLogarithm(SparseGaussianList, ISparseList<Double>, SparseGaussianList)

    VMP message to means.

    Declaration
    public static SparseGaussianList MeanAverageLogarithm(SparseGaussianList sample, ISparseList<double> precision, SparseGaussianList result)
    Parameters
    Type Name Description
    SparseGaussianList sample

    Incoming message from sample. Must be a proper distribution. If any element is uniform, the result will be uniform.

    ISparseList<Double> precision

    Constant value for precs.

    SparseGaussianList result

    Modified to contain the outgoing message.

    Returns
    Type Description
    SparseGaussianList

    result

    Remarks

    The outgoing message is the exponential of the average log-factor value, where the average is over all arguments except means. The formula is exp(sum_(sample) p(sample) log(factor(sample,means,precs))).

    Exceptions
    Type Condition
    ImproperMessageException

    sample is not a proper distribution.

    MeanAverageLogarithm(SparseGaussianList, SparseGammaList, SparseGaussianList)

    VMP message to means.

    Declaration
    public static SparseGaussianList MeanAverageLogarithm(SparseGaussianList sample, SparseGammaList precision, SparseGaussianList result)
    Parameters
    Type Name Description
    SparseGaussianList sample

    Incoming message from sample. Must be a proper distribution. If any element is uniform, the result will be uniform.

    SparseGammaList precision

    Incoming message from precs. Must be a proper distribution. If any element is uniform, the result will be uniform.

    SparseGaussianList result

    Modified to contain the outgoing message.

    Returns
    Type Description
    SparseGaussianList

    result

    Remarks

    The outgoing message is the exponential of the average log-factor value, where the average is over all arguments except means. The formula is exp(sum_(sample,precs) p(sample,precs) log(factor(sample,means,precs))).

    Exceptions
    Type Condition
    ImproperMessageException

    sample is not a proper distribution.

    ImproperMessageException

    precision is not a proper distribution.

    PrecisionAverageConditional(ISparseList<Double>, ISparseList<Double>, SparseGammaList)

    EP message to precs.

    Declaration
    public static SparseGammaList PrecisionAverageConditional(ISparseList<double> sample, ISparseList<double> mean, SparseGammaList result)
    Parameters
    Type Name Description
    ISparseList<Double> sample

    Constant value for sample.

    ISparseList<Double> mean

    Constant value for means.

    SparseGammaList result

    Modified to contain the outgoing message.

    Returns
    Type Description
    SparseGammaList

    result

    Remarks

    The outgoing message is the factor viewed as a function of precs conditioned on the given values.

    PrecisionAverageConditional(ISparseList<Double>, SparseGaussianList, SparseGammaList, SparseGammaList)

    EP message to precs.

    Declaration
    public static SparseGammaList PrecisionAverageConditional(ISparseList<double> sample, SparseGaussianList mean, SparseGammaList precision, SparseGammaList result)
    Parameters
    Type Name Description
    ISparseList<Double> sample

    Constant value for sample.

    SparseGaussianList mean

    Incoming message from means. Must be a proper distribution. If any element is uniform, the result will be uniform.

    SparseGammaList precision

    Incoming message from precs. Must be a proper distribution. If any element is uniform, the result will be uniform.

    SparseGammaList result

    Modified to contain the outgoing message.

    Returns
    Type Description
    SparseGammaList

    result

    Remarks

    The outgoing message is a distribution matching the moments of precs as the random arguments are varied. The formula is proj[p(precs) sum_(means) p(means) factor(sample,means,precs)]/p(precs).

    Exceptions
    Type Condition
    ImproperMessageException

    mean is not a proper distribution.

    ImproperMessageException

    precision is not a proper distribution.

    PrecisionAverageConditional(SparseGaussianList, ISparseList<Double>, SparseGammaList, SparseGammaList)

    EP message to precs.

    Declaration
    public static SparseGammaList PrecisionAverageConditional(SparseGaussianList sample, ISparseList<double> mean, SparseGammaList precision, SparseGammaList result)
    Parameters
    Type Name Description
    SparseGaussianList sample

    Incoming message from sample. Must be a proper distribution. If any element is uniform, the result will be uniform.

    ISparseList<Double> mean

    Constant value for means.

    SparseGammaList precision

    Incoming message from precs. Must be a proper distribution. If any element is uniform, the result will be uniform.

    SparseGammaList result

    Modified to contain the outgoing message.

    Returns
    Type Description
    SparseGammaList

    result

    Remarks

    The outgoing message is a distribution matching the moments of precs as the random arguments are varied. The formula is proj[p(precs) sum_(sample) p(sample) factor(sample,means,precs)]/p(precs).

    Exceptions
    Type Condition
    ImproperMessageException

    sample is not a proper distribution.

    ImproperMessageException

    precision is not a proper distribution.

    PrecisionAverageConditional(SparseGaussianList, SparseGaussianList, SparseGammaList, SparseGammaList)

    EP message to precs.

    Declaration
    public static SparseGammaList PrecisionAverageConditional(SparseGaussianList sample, SparseGaussianList mean, SparseGammaList precision, SparseGammaList result)
    Parameters
    Type Name Description
    SparseGaussianList sample

    Incoming message from sample. Must be a proper distribution. If any element is uniform, the result will be uniform.

    SparseGaussianList mean

    Incoming message from means. Must be a proper distribution. If any element is uniform, the result will be uniform.

    SparseGammaList precision

    Incoming message from precs. Must be a proper distribution. If any element is uniform, the result will be uniform.

    SparseGammaList result

    Modified to contain the outgoing message.

    Returns
    Type Description
    SparseGammaList

    result

    Remarks

    The outgoing message is a distribution matching the moments of precs as the random arguments are varied. The formula is proj[p(precs) sum_(sample,means) p(sample,means) factor(sample,means,precs)]/p(precs).

    Exceptions
    Type Condition
    ImproperMessageException

    sample is not a proper distribution.

    ImproperMessageException

    mean is not a proper distribution.

    ImproperMessageException

    precision is not a proper distribution.

    PrecisionAverageLogarithm(ISparseList<Double>, ISparseList<Double>, SparseGammaList)

    VMP message to precs.

    Declaration
    public static SparseGammaList PrecisionAverageLogarithm(ISparseList<double> sample, ISparseList<double> mean, SparseGammaList result)
    Parameters
    Type Name Description
    ISparseList<Double> sample

    Constant value for sample.

    ISparseList<Double> mean

    Constant value for means.

    SparseGammaList result

    Modified to contain the outgoing message.

    Returns
    Type Description
    SparseGammaList

    result

    Remarks

    The outgoing message is the factor viewed as a function of precs conditioned on the given values.

    PrecisionAverageLogarithm(ISparseList<Double>, SparseGaussianList, SparseGammaList)

    VMP message to precs.

    Declaration
    public static SparseGammaList PrecisionAverageLogarithm(ISparseList<double> sample, SparseGaussianList mean, SparseGammaList result)
    Parameters
    Type Name Description
    ISparseList<Double> sample

    Constant value for sample.

    SparseGaussianList mean

    Incoming message from means. Must be a proper distribution. If any element is uniform, the result will be uniform.

    SparseGammaList result

    Modified to contain the outgoing message.

    Returns
    Type Description
    SparseGammaList

    result

    Remarks

    The outgoing message is the exponential of the average log-factor value, where the average is over all arguments except precs. The formula is exp(sum_(means) p(means) log(factor(sample,means,precs))).

    Exceptions
    Type Condition
    ImproperMessageException

    mean is not a proper distribution.

    PrecisionAverageLogarithm(SparseGaussianList, ISparseList<Double>, SparseGammaList)

    VMP message to precs.

    Declaration
    public static SparseGammaList PrecisionAverageLogarithm(SparseGaussianList sample, ISparseList<double> mean, SparseGammaList result)
    Parameters
    Type Name Description
    SparseGaussianList sample

    Incoming message from sample. Must be a proper distribution. If any element is uniform, the result will be uniform.

    ISparseList<Double> mean

    Constant value for means.

    SparseGammaList result

    Modified to contain the outgoing message.

    Returns
    Type Description
    SparseGammaList

    result

    Remarks

    The outgoing message is the exponential of the average log-factor value, where the average is over all arguments except precs. The formula is exp(sum_(sample) p(sample) log(factor(sample,means,precs))).

    Exceptions
    Type Condition
    ImproperMessageException

    sample is not a proper distribution.

    PrecisionAverageLogarithm(SparseGaussianList, SparseGaussianList, SparseGammaList)

    VMP message to precs.

    Declaration
    public static SparseGammaList PrecisionAverageLogarithm(SparseGaussianList sample, SparseGaussianList mean, SparseGammaList result)
    Parameters
    Type Name Description
    SparseGaussianList sample

    Incoming message from sample. Must be a proper distribution. If any element is uniform, the result will be uniform.

    SparseGaussianList mean

    Incoming message from means. Must be a proper distribution. If any element is uniform, the result will be uniform.

    SparseGammaList result

    Modified to contain the outgoing message.

    Returns
    Type Description
    SparseGammaList

    result

    Remarks

    The outgoing message is the exponential of the average log-factor value, where the average is over all arguments except precs. The formula is exp(sum_(sample,means) p(sample,means) log(factor(sample,means,precs))).

    Exceptions
    Type Condition
    ImproperMessageException

    sample is not a proper distribution.

    ImproperMessageException

    mean is not a proper distribution.

    SampleAverageConditional(ISparseList<Double>, ISparseList<Double>, SparseGaussianList)

    EP message to sample.

    Declaration
    public static SparseGaussianList SampleAverageConditional(ISparseList<double> mean, ISparseList<double> precision, SparseGaussianList result)
    Parameters
    Type Name Description
    ISparseList<Double> mean

    Constant value for means.

    ISparseList<Double> precision

    Constant value for precs.

    SparseGaussianList result

    Modified to contain the outgoing message.

    Returns
    Type Description
    SparseGaussianList

    result

    Remarks

    The outgoing message is the factor viewed as a function of sample conditioned on the given values.

    SampleAverageConditional(SparseGaussianList, ISparseList<Double>, SparseGammaList, SparseGammaList, SparseGaussianList)

    EP message to sample.

    Declaration
    public static SparseGaussianList SampleAverageConditional(SparseGaussianList sample, ISparseList<double> mean, SparseGammaList precision, SparseGammaList to_precision, SparseGaussianList result)
    Parameters
    Type Name Description
    SparseGaussianList sample

    Incoming message from sample.

    ISparseList<Double> mean

    Constant value for means.

    SparseGammaList precision

    Incoming message from precs. Must be a proper distribution. If any element is uniform, the result will be uniform.

    SparseGammaList to_precision

    Previous outgoing message to precision.

    SparseGaussianList result

    Modified to contain the outgoing message.

    Returns
    Type Description
    SparseGaussianList

    result

    Remarks

    The outgoing message is a distribution matching the moments of sample as the random arguments are varied. The formula is proj[p(sample) sum_(precs) p(precs) factor(sample,means,precs)]/p(sample).

    Exceptions
    Type Condition
    ImproperMessageException

    precision is not a proper distribution.

    SampleAverageConditional(SparseGaussianList, ISparseList<Double>, SparseGaussianList)

    EP message to sample.

    Declaration
    public static SparseGaussianList SampleAverageConditional(SparseGaussianList mean, ISparseList<double> precision, SparseGaussianList result)
    Parameters
    Type Name Description
    SparseGaussianList mean

    Incoming message from means. Must be a proper distribution. If any element is uniform, the result will be uniform.

    ISparseList<Double> precision

    Constant value for precs.

    SparseGaussianList result

    Modified to contain the outgoing message.

    Returns
    Type Description
    SparseGaussianList

    result

    Remarks

    The outgoing message is a distribution matching the moments of sample as the random arguments are varied. The formula is proj[p(sample) sum_(means) p(means) factor(sample,means,precs)]/p(sample).

    Exceptions
    Type Condition
    ImproperMessageException

    mean is not a proper distribution.

    SampleAverageConditional(SparseGaussianList, SparseGaussianList, SparseGammaList, SparseGammaList, SparseGaussianList)

    EP message to sample.

    Declaration
    public static SparseGaussianList SampleAverageConditional(SparseGaussianList sample, SparseGaussianList mean, SparseGammaList precision, SparseGammaList to_precision, SparseGaussianList result)
    Parameters
    Type Name Description
    SparseGaussianList sample

    Incoming message from sample.

    SparseGaussianList mean

    Incoming message from means. Must be a proper distribution. If any element is uniform, the result will be uniform.

    SparseGammaList precision

    Incoming message from precs. Must be a proper distribution. If any element is uniform, the result will be uniform.

    SparseGammaList to_precision

    Previous outgoing message to precision.

    SparseGaussianList result

    Modified to contain the outgoing message.

    Returns
    Type Description
    SparseGaussianList

    result

    Remarks

    The outgoing message is a distribution matching the moments of sample as the random arguments are varied. The formula is proj[p(sample) sum_(means,precs) p(means,precs) factor(sample,means,precs)]/p(sample).

    Exceptions
    Type Condition
    ImproperMessageException

    mean is not a proper distribution.

    ImproperMessageException

    precision is not a proper distribution.

    SampleAverageConditionalInit(ISparseList<Double>)

    Declaration
    public static SparseGaussianList SampleAverageConditionalInit(ISparseList<double> mean)
    Parameters
    Type Name Description
    ISparseList<Double> mean

    Constant value for means.

    Returns
    Type Description
    SparseGaussianList
    Remarks

    SampleAverageConditionalInit(SparseGaussianList)

    Declaration
    public static SparseGaussianList SampleAverageConditionalInit(SparseGaussianList mean)
    Parameters
    Type Name Description
    SparseGaussianList mean

    Incoming message from means.

    Returns
    Type Description
    SparseGaussianList
    Remarks

    SampleAverageLogarithm(ISparseList<Double>, ISparseList<Double>, SparseGaussianList)

    VMP message to sample.

    Declaration
    public static SparseGaussianList SampleAverageLogarithm(ISparseList<double> mean, ISparseList<double> precision, SparseGaussianList result)
    Parameters
    Type Name Description
    ISparseList<Double> mean

    Constant value for means.

    ISparseList<Double> precision

    Constant value for precs.

    SparseGaussianList result

    Modified to contain the outgoing message.

    Returns
    Type Description
    SparseGaussianList

    result

    Remarks

    The outgoing message is the factor viewed as a function of sample conditioned on the given values.

    SampleAverageLogarithm(ISparseList<Double>, SparseGammaList, SparseGaussianList)

    VMP message to sample.

    Declaration
    public static SparseGaussianList SampleAverageLogarithm(ISparseList<double> mean, SparseGammaList precision, SparseGaussianList result)
    Parameters
    Type Name Description
    ISparseList<Double> mean

    Constant value for means.

    SparseGammaList precision

    Incoming message from precs. Must be a proper distribution. If any element is uniform, the result will be uniform.

    SparseGaussianList result

    Modified to contain the outgoing message.

    Returns
    Type Description
    SparseGaussianList

    result

    Remarks

    The outgoing message is the exponential of the average log-factor value, where the average is over all arguments except sample. The formula is exp(sum_(precs) p(precs) log(factor(sample,means,precs))).

    Exceptions
    Type Condition
    ImproperMessageException

    precision is not a proper distribution.

    SampleAverageLogarithm(SparseGaussianList, ISparseList<Double>, SparseGaussianList)

    VMP message to sample.

    Declaration
    public static SparseGaussianList SampleAverageLogarithm(SparseGaussianList mean, ISparseList<double> precision, SparseGaussianList result)
    Parameters
    Type Name Description
    SparseGaussianList mean

    Incoming message from means. Must be a proper distribution. If any element is uniform, the result will be uniform.

    ISparseList<Double> precision

    Constant value for precs.

    SparseGaussianList result

    Modified to contain the outgoing message.

    Returns
    Type Description
    SparseGaussianList

    result

    Remarks

    The outgoing message is the exponential of the average log-factor value, where the average is over all arguments except sample. The formula is exp(sum_(means) p(means) log(factor(sample,means,precs))).

    Exceptions
    Type Condition
    ImproperMessageException

    mean is not a proper distribution.

    SampleAverageLogarithm(SparseGaussianList, SparseGammaList, SparseGaussianList)

    VMP message to sample.

    Declaration
    public static SparseGaussianList SampleAverageLogarithm(SparseGaussianList mean, SparseGammaList precision, SparseGaussianList result)
    Parameters
    Type Name Description
    SparseGaussianList mean

    Incoming message from means. Must be a proper distribution. If any element is uniform, the result will be uniform.

    SparseGammaList precision

    Incoming message from precs. Must be a proper distribution. If any element is uniform, the result will be uniform.

    SparseGaussianList result

    Modified to contain the outgoing message.

    Returns
    Type Description
    SparseGaussianList

    result

    Remarks

    The outgoing message is the exponential of the average log-factor value, where the average is over all arguments except sample. The formula is exp(sum_(means,precs) p(means,precs) log(factor(sample,means,precs))).

    Exceptions
    Type Condition
    ImproperMessageException

    mean is not a proper distribution.

    ImproperMessageException

    precision is not a proper distribution.

    SampleAverageLogarithmInit(ISparseList<Double>)

    Declaration
    public static SparseGaussianList SampleAverageLogarithmInit(ISparseList<double> mean)
    Parameters
    Type Name Description
    ISparseList<Double> mean

    Constant value for means.

    Returns
    Type Description
    SparseGaussianList
    Remarks

    SampleAverageLogarithmInit(SparseGaussianList)

    Declaration
    public static SparseGaussianList SampleAverageLogarithmInit(SparseGaussianList mean)
    Parameters
    Type Name Description
    SparseGaussianList mean

    Incoming message from means.

    Returns
    Type Description
    SparseGaussianList
    Remarks

    In This Article
    Back to top Copyright © .NET Foundation. All rights reserved.