Class SparseGaussianListOp
Provides outgoing messages for Sample(ISparseList<Double>, ISparseList<Double>), given random arguments to the function.
Inherited Members
Namespace: Microsoft.ML.Probabilistic.Factors
Assembly: Microsoft.ML.Probabilistic.dll
Syntax
[FactorMethod(new string[]{"sample", "mean", "precision"}, typeof(SparseGaussianList), "Sample", new Type[]{typeof(ISparseList<double>), typeof(ISparseList<double>)})]
[Quality(QualityBand.Stable)]
public static class SparseGaussianListOp
Methods
AverageLogFactor(ISparseList<Double>, ISparseList<Double>, ISparseList<Double>)
Evidence message for VMP.
Declaration
public static double AverageLogFactor(ISparseList<double> sample, ISparseList<double> mean, ISparseList<double> precision)
Parameters
Type | Name | Description |
---|---|---|
ISparseList<Double> | sample | Constant value for |
ISparseList<Double> | mean | Constant value for |
ISparseList<Double> | precision | Constant value for |
Returns
Type | Description |
---|---|
Double | Average of the factor's log-value across the given argument distributions. |
Remarks
The formula for the result is log(factor(sample,means,precs))
. Adding up these values across all factors and variables gives the log-evidence estimate for VMP.
AverageLogFactor(ISparseList<Double>, ISparseList<Double>, SparseGammaList)
Evidence message for VMP.
Declaration
public static double AverageLogFactor(ISparseList<double> sample, ISparseList<double> mean, SparseGammaList precision)
Parameters
Type | Name | Description |
---|---|---|
ISparseList<Double> | sample | Constant value for |
ISparseList<Double> | mean | Constant value for |
SparseGammaList | precision | Incoming message from |
Returns
Type | Description |
---|---|
Double | Average of the factor's log-value across the given argument distributions. |
Remarks
The formula for the result is sum_(precs) p(precs) log(factor(sample,means,precs))
. Adding up these values across all factors and variables gives the log-evidence estimate for VMP.
Exceptions
Type | Condition |
---|---|
ImproperMessageException |
|
AverageLogFactor(ISparseList<Double>, SparseGaussianList, ISparseList<Double>)
Evidence message for VMP.
Declaration
public static double AverageLogFactor(ISparseList<double> sample, SparseGaussianList mean, ISparseList<double> precision)
Parameters
Type | Name | Description |
---|---|---|
ISparseList<Double> | sample | Constant value for |
SparseGaussianList | mean | Incoming message from |
ISparseList<Double> | precision | Constant value for |
Returns
Type | Description |
---|---|
Double | Average of the factor's log-value across the given argument distributions. |
Remarks
The formula for the result is sum_(means) p(means) log(factor(sample,means,precs))
. Adding up these values across all factors and variables gives the log-evidence estimate for VMP.
Exceptions
Type | Condition |
---|---|
ImproperMessageException |
|
AverageLogFactor(ISparseList<Double>, SparseGaussianList, SparseGammaList)
Evidence message for VMP.
Declaration
public static double AverageLogFactor(ISparseList<double> sample, SparseGaussianList mean, SparseGammaList precision)
Parameters
Type | Name | Description |
---|---|---|
ISparseList<Double> | sample | Constant value for |
SparseGaussianList | mean | Incoming message from |
SparseGammaList | precision | Incoming message from |
Returns
Type | Description |
---|---|
Double | Average of the factor's log-value across the given argument distributions. |
Remarks
The formula for the result is sum_(means,precs) p(means,precs) log(factor(sample,means,precs))
. Adding up these values across all factors and variables gives the log-evidence estimate for VMP.
Exceptions
Type | Condition |
---|---|
ImproperMessageException |
|
ImproperMessageException |
|
AverageLogFactor(SparseGaussianList, ISparseList<Double>, ISparseList<Double>)
Evidence message for VMP.
Declaration
public static double AverageLogFactor(SparseGaussianList sample, ISparseList<double> mean, ISparseList<double> precision)
Parameters
Type | Name | Description |
---|---|---|
SparseGaussianList | sample | Incoming message from |
ISparseList<Double> | mean | Constant value for |
ISparseList<Double> | precision | Constant value for |
Returns
Type | Description |
---|---|
Double | Average of the factor's log-value across the given argument distributions. |
Remarks
The formula for the result is sum_(sample) p(sample) log(factor(sample,means,precs))
. Adding up these values across all factors and variables gives the log-evidence estimate for VMP.
Exceptions
Type | Condition |
---|---|
ImproperMessageException |
|
AverageLogFactor(SparseGaussianList, ISparseList<Double>, SparseGammaList)
Evidence message for VMP.
Declaration
public static double AverageLogFactor(SparseGaussianList sample, ISparseList<double> mean, SparseGammaList precision)
Parameters
Type | Name | Description |
---|---|---|
SparseGaussianList | sample | Incoming message from |
ISparseList<Double> | mean | Constant value for |
SparseGammaList | precision | Incoming message from |
Returns
Type | Description |
---|---|
Double | Average of the factor's log-value across the given argument distributions. |
Remarks
The formula for the result is sum_(sample,precs) p(sample,precs) log(factor(sample,means,precs))
. Adding up these values across all factors and variables gives the log-evidence estimate for VMP.
Exceptions
Type | Condition |
---|---|
ImproperMessageException |
|
ImproperMessageException |
|
AverageLogFactor(SparseGaussianList, SparseGaussianList, ISparseList<Double>)
Evidence message for VMP.
Declaration
public static double AverageLogFactor(SparseGaussianList sample, SparseGaussianList mean, ISparseList<double> precision)
Parameters
Type | Name | Description |
---|---|---|
SparseGaussianList | sample | Incoming message from |
SparseGaussianList | mean | Incoming message from |
ISparseList<Double> | precision | Constant value for |
Returns
Type | Description |
---|---|
Double | Average of the factor's log-value across the given argument distributions. |
Remarks
The formula for the result is sum_(sample,means) p(sample,means) log(factor(sample,means,precs))
. Adding up these values across all factors and variables gives the log-evidence estimate for VMP.
Exceptions
Type | Condition |
---|---|
ImproperMessageException |
|
ImproperMessageException |
|
AverageLogFactor(SparseGaussianList, SparseGaussianList, SparseGammaList)
Evidence message for VMP.
Declaration
public static double AverageLogFactor(SparseGaussianList sample, SparseGaussianList mean, SparseGammaList precision)
Parameters
Type | Name | Description |
---|---|---|
SparseGaussianList | sample | Incoming message from |
SparseGaussianList | mean | Incoming message from |
SparseGammaList | precision | Incoming message from |
Returns
Type | Description |
---|---|
Double | Average of the factor's log-value across the given argument distributions. |
Remarks
The formula for the result is sum_(sample,means,precs) p(sample,means,precs) log(factor(sample,means,precs))
. Adding up these values across all factors and variables gives the log-evidence estimate for VMP.
Exceptions
Type | Condition |
---|---|
ImproperMessageException |
|
ImproperMessageException |
|
ImproperMessageException |
|
LogAverageFactor(ISparseList<Double>, ISparseList<Double>, ISparseList<Double>)
Evidence message for EP.
Declaration
public static double LogAverageFactor(ISparseList<double> sample, ISparseList<double> mean, ISparseList<double> precision)
Parameters
Type | Name | Description |
---|---|---|
ISparseList<Double> | sample | Constant value for |
ISparseList<Double> | mean | Constant value for |
ISparseList<Double> | precision | Constant value for |
Returns
Type | Description |
---|---|
Double | Logarithm of the factor's average value across the given argument distributions. |
Remarks
The formula for the result is log(factor(sample,means,precs))
.
LogAverageFactor(ISparseList<Double>, ISparseList<Double>, SparseGammaList)
Evidence message for EP.
Declaration
public static double LogAverageFactor(ISparseList<double> sample, ISparseList<double> mean, SparseGammaList precision)
Parameters
Type | Name | Description |
---|---|---|
ISparseList<Double> | sample | Constant value for |
ISparseList<Double> | mean | Constant value for |
SparseGammaList | precision | Incoming message from |
Returns
Type | Description |
---|---|
Double | Logarithm of the factor's average value across the given argument distributions. |
Remarks
The formula for the result is log(sum_(precs) p(precs) factor(sample,means,precs))
.
Exceptions
Type | Condition |
---|---|
ImproperMessageException |
|
LogAverageFactor(ISparseList<Double>, SparseGaussianList, ISparseList<Double>)
Evidence message for EP.
Declaration
public static double LogAverageFactor(ISparseList<double> sample, SparseGaussianList mean, ISparseList<double> precision)
Parameters
Type | Name | Description |
---|---|---|
ISparseList<Double> | sample | Constant value for |
SparseGaussianList | mean | Incoming message from |
ISparseList<Double> | precision | Constant value for |
Returns
Type | Description |
---|---|
Double | Logarithm of the factor's average value across the given argument distributions. |
Remarks
The formula for the result is log(sum_(means) p(means) factor(sample,means,precs))
.
Exceptions
Type | Condition |
---|---|
ImproperMessageException |
|
LogAverageFactor(ISparseList<Double>, SparseGaussianList, SparseGammaList, SparseGammaList)
Evidence message for EP.
Declaration
public static double LogAverageFactor(ISparseList<double> sample, SparseGaussianList mean, SparseGammaList precision, SparseGammaList to_precision)
Parameters
Type | Name | Description |
---|---|---|
ISparseList<Double> | sample | Constant value for |
SparseGaussianList | mean | Incoming message from |
SparseGammaList | precision | Incoming message from |
SparseGammaList | to_precision | Previous outgoing message to |
Returns
Type | Description |
---|---|
Double | Logarithm of the factor's average value across the given argument distributions. |
Remarks
The formula for the result is log(sum_(means,precs) p(means,precs) factor(sample,means,precs))
.
Exceptions
Type | Condition |
---|---|
ImproperMessageException |
|
ImproperMessageException |
|
LogAverageFactor(SparseGaussianList, ISparseList<Double>, ISparseList<Double>)
Evidence message for EP.
Declaration
public static double LogAverageFactor(SparseGaussianList sample, ISparseList<double> mean, ISparseList<double> precision)
Parameters
Type | Name | Description |
---|---|---|
SparseGaussianList | sample | Incoming message from |
ISparseList<Double> | mean | Constant value for |
ISparseList<Double> | precision | Constant value for |
Returns
Type | Description |
---|---|
Double | Logarithm of the factor's average value across the given argument distributions. |
Remarks
The formula for the result is log(sum_(sample) p(sample) factor(sample,means,precs))
.
Exceptions
Type | Condition |
---|---|
ImproperMessageException |
|
LogAverageFactor(SparseGaussianList, ISparseList<Double>, SparseGammaList, SparseGammaList)
Evidence message for EP.
Declaration
public static double LogAverageFactor(SparseGaussianList sample, ISparseList<double> mean, SparseGammaList precision, SparseGammaList to_precision)
Parameters
Type | Name | Description |
---|---|---|
SparseGaussianList | sample | Incoming message from |
ISparseList<Double> | mean | Constant value for |
SparseGammaList | precision | Incoming message from |
SparseGammaList | to_precision | Previous outgoing message to |
Returns
Type | Description |
---|---|
Double | Logarithm of the factor's average value across the given argument distributions. |
Remarks
The formula for the result is log(sum_(sample,precs) p(sample,precs) factor(sample,means,precs))
.
Exceptions
Type | Condition |
---|---|
ImproperMessageException |
|
ImproperMessageException |
|
LogAverageFactor(SparseGaussianList, SparseGaussianList, ISparseList<Double>)
Evidence message for EP.
Declaration
public static double LogAverageFactor(SparseGaussianList sample, SparseGaussianList mean, ISparseList<double> precision)
Parameters
Type | Name | Description |
---|---|---|
SparseGaussianList | sample | Incoming message from |
SparseGaussianList | mean | Incoming message from |
ISparseList<Double> | precision | Constant value for |
Returns
Type | Description |
---|---|
Double | Logarithm of the factor's average value across the given argument distributions. |
Remarks
The formula for the result is log(sum_(sample,means) p(sample,means) factor(sample,means,precs))
.
Exceptions
Type | Condition |
---|---|
ImproperMessageException |
|
ImproperMessageException |
|
LogAverageFactor(SparseGaussianList, SparseGaussianList, SparseGammaList, SparseGammaList)
Evidence message for EP.
Declaration
public static double LogAverageFactor(SparseGaussianList sample, SparseGaussianList mean, SparseGammaList precision, SparseGammaList to_precision)
Parameters
Type | Name | Description |
---|---|---|
SparseGaussianList | sample | Incoming message from |
SparseGaussianList | mean | Incoming message from |
SparseGammaList | precision | Incoming message from |
SparseGammaList | to_precision | Previous outgoing message to |
Returns
Type | Description |
---|---|
Double | Logarithm of the factor's average value across the given argument distributions. |
Remarks
The formula for the result is log(sum_(sample,means,precs) p(sample,means,precs) factor(sample,means,precs))
.
Exceptions
Type | Condition |
---|---|
ImproperMessageException |
|
ImproperMessageException |
|
ImproperMessageException |
|
LogEvidenceRatio(ISparseList<Double>, ISparseList<Double>, ISparseList<Double>)
Evidence message for EP.
Declaration
public static double LogEvidenceRatio(ISparseList<double> sample, ISparseList<double> mean, ISparseList<double> precision)
Parameters
Type | Name | Description |
---|---|---|
ISparseList<Double> | sample | Constant value for |
ISparseList<Double> | mean | Constant value for |
ISparseList<Double> | precision | Constant value for |
Returns
Type | Description |
---|---|
Double | Logarithm of the factor's contribution the EP model evidence. |
Remarks
The formula for the result is log(factor(sample,means,precs))
. Adding up these values across all factors and variables gives the log-evidence estimate for EP.
LogEvidenceRatio(ISparseList<Double>, ISparseList<Double>, SparseGammaList)
Evidence message for EP.
Declaration
public static double LogEvidenceRatio(ISparseList<double> sample, ISparseList<double> mean, SparseGammaList precision)
Parameters
Type | Name | Description |
---|---|---|
ISparseList<Double> | sample | Constant value for |
ISparseList<Double> | mean | Constant value for |
SparseGammaList | precision | Incoming message from |
Returns
Type | Description |
---|---|
Double | Logarithm of the factor's contribution the EP model evidence. |
Remarks
The formula for the result is log(sum_(precs) p(precs) factor(sample,means,precs))
. Adding up these values across all factors and variables gives the log-evidence estimate for EP.
Exceptions
Type | Condition |
---|---|
ImproperMessageException |
|
LogEvidenceRatio(ISparseList<Double>, SparseGaussianList, ISparseList<Double>)
Evidence message for EP.
Declaration
public static double LogEvidenceRatio(ISparseList<double> sample, SparseGaussianList mean, ISparseList<double> precision)
Parameters
Type | Name | Description |
---|---|---|
ISparseList<Double> | sample | Constant value for |
SparseGaussianList | mean | Incoming message from |
ISparseList<Double> | precision | Constant value for |
Returns
Type | Description |
---|---|
Double | Logarithm of the factor's contribution the EP model evidence. |
Remarks
The formula for the result is log(sum_(means) p(means) factor(sample,means,precs))
. Adding up these values across all factors and variables gives the log-evidence estimate for EP.
LogEvidenceRatio(ISparseList<Double>, SparseGaussianList, SparseGammaList, SparseGammaList)
Evidence message for EP.
Declaration
public static double LogEvidenceRatio(ISparseList<double> sample, SparseGaussianList mean, SparseGammaList precision, SparseGammaList to_precision)
Parameters
Type | Name | Description |
---|---|---|
ISparseList<Double> | sample | Constant value for |
SparseGaussianList | mean | Incoming message from |
SparseGammaList | precision | Incoming message from |
SparseGammaList | to_precision | Previous outgoing message to |
Returns
Type | Description |
---|---|
Double | Logarithm of the factor's contribution the EP model evidence. |
Remarks
The formula for the result is log(sum_(means,precs) p(means,precs) factor(sample,means,precs))
. Adding up these values across all factors and variables gives the log-evidence estimate for EP.
Exceptions
Type | Condition |
---|---|
ImproperMessageException |
|
ImproperMessageException |
|
LogEvidenceRatio(SparseGaussianList, ISparseList<Double>, ISparseList<Double>)
Evidence message for EP.
Declaration
public static double LogEvidenceRatio(SparseGaussianList sample, ISparseList<double> mean, ISparseList<double> precision)
Parameters
Type | Name | Description |
---|---|---|
SparseGaussianList | sample | Incoming message from |
ISparseList<Double> | mean | Constant value for |
ISparseList<Double> | precision | Constant value for |
Returns
Type | Description |
---|---|
Double | Logarithm of the factor's contribution the EP model evidence. |
Remarks
The formula for the result is log(sum_(sample) p(sample) factor(sample,means,precs) / sum_sample p(sample) messageTo(sample))
. Adding up these values across all factors and variables gives the log-evidence estimate for EP.
LogEvidenceRatio(SparseGaussianList, ISparseList<Double>, SparseGammaList, SparseGaussianList, SparseGammaList)
Evidence message for EP.
Declaration
public static double LogEvidenceRatio(SparseGaussianList sample, ISparseList<double> mean, SparseGammaList precision, SparseGaussianList to_sample, SparseGammaList to_precision)
Parameters
Type | Name | Description |
---|---|---|
SparseGaussianList | sample | Incoming message from |
ISparseList<Double> | mean | Constant value for |
SparseGammaList | precision | Incoming message from |
SparseGaussianList | to_sample | Outgoing message to |
SparseGammaList | to_precision | Previous outgoing message to |
Returns
Type | Description |
---|---|
Double | Logarithm of the factor's contribution the EP model evidence. |
Remarks
The formula for the result is log(sum_(sample,precs) p(sample,precs) factor(sample,means,precs) / sum_sample p(sample) messageTo(sample))
. Adding up these values across all factors and variables gives the log-evidence estimate for EP.
Exceptions
Type | Condition |
---|---|
ImproperMessageException |
|
ImproperMessageException |
|
LogEvidenceRatio(SparseGaussianList, SparseGaussianList, ISparseList<Double>)
Evidence message for EP.
Declaration
public static double LogEvidenceRatio(SparseGaussianList sample, SparseGaussianList mean, ISparseList<double> precision)
Parameters
Type | Name | Description |
---|---|---|
SparseGaussianList | sample | Incoming message from |
SparseGaussianList | mean | Incoming message from |
ISparseList<Double> | precision | Constant value for |
Returns
Type | Description |
---|---|
Double | Logarithm of the factor's contribution the EP model evidence. |
Remarks
The formula for the result is log(sum_(sample,means) p(sample,means) factor(sample,means,precs) / sum_sample p(sample) messageTo(sample))
. Adding up these values across all factors and variables gives the log-evidence estimate for EP.
LogEvidenceRatio(SparseGaussianList, SparseGaussianList, SparseGammaList, SparseGaussianList, SparseGammaList)
Evidence message for EP.
Declaration
public static double LogEvidenceRatio(SparseGaussianList sample, SparseGaussianList mean, SparseGammaList precision, SparseGaussianList to_sample, SparseGammaList to_precision)
Parameters
Type | Name | Description |
---|---|---|
SparseGaussianList | sample | Incoming message from |
SparseGaussianList | mean | Incoming message from |
SparseGammaList | precision | Incoming message from |
SparseGaussianList | to_sample | Outgoing message to |
SparseGammaList | to_precision | Previous outgoing message to |
Returns
Type | Description |
---|---|
Double | Logarithm of the factor's contribution the EP model evidence. |
Remarks
The formula for the result is log(sum_(sample,means,precs) p(sample,means,precs) factor(sample,means,precs) / sum_sample p(sample) messageTo(sample))
. Adding up these values across all factors and variables gives the log-evidence estimate for EP.
Exceptions
Type | Condition |
---|---|
ImproperMessageException |
|
ImproperMessageException |
|
ImproperMessageException |
|
MeanAverageConditional(ISparseList<Double>, ISparseList<Double>, SparseGaussianList)
EP message to means
.
Declaration
public static SparseGaussianList MeanAverageConditional(ISparseList<double> sample, ISparseList<double> precision, SparseGaussianList result)
Parameters
Type | Name | Description |
---|---|---|
ISparseList<Double> | sample | Constant value for |
ISparseList<Double> | precision | Constant value for |
SparseGaussianList | result | Modified to contain the outgoing message. |
Returns
Type | Description |
---|---|
SparseGaussianList |
|
Remarks
The outgoing message is the factor viewed as a function of means
conditioned on the given values.
MeanAverageConditional(ISparseList<Double>, SparseGaussianList, SparseGammaList, SparseGammaList, SparseGaussianList)
EP message to means
.
Declaration
public static SparseGaussianList MeanAverageConditional(ISparseList<double> sample, SparseGaussianList mean, SparseGammaList precision, SparseGammaList to_precision, SparseGaussianList result)
Parameters
Type | Name | Description |
---|---|---|
ISparseList<Double> | sample | Constant value for |
SparseGaussianList | mean | Incoming message from |
SparseGammaList | precision | Incoming message from |
SparseGammaList | to_precision | Previous outgoing message to |
SparseGaussianList | result | Modified to contain the outgoing message. |
Returns
Type | Description |
---|---|
SparseGaussianList |
|
Remarks
The outgoing message is a distribution matching the moments of means
as the random arguments are varied. The formula is proj[p(means) sum_(precs) p(precs) factor(sample,means,precs)]/p(means)
.
Exceptions
Type | Condition |
---|---|
ImproperMessageException |
|
ImproperMessageException |
|
MeanAverageConditional(SparseGaussianList, ISparseList<Double>, SparseGaussianList)
EP message to means
.
Declaration
public static SparseGaussianList MeanAverageConditional(SparseGaussianList sample, ISparseList<double> precision, SparseGaussianList result)
Parameters
Type | Name | Description |
---|---|---|
SparseGaussianList | sample | Incoming message from |
ISparseList<Double> | precision | Constant value for |
SparseGaussianList | result | Modified to contain the outgoing message. |
Returns
Type | Description |
---|---|
SparseGaussianList |
|
Remarks
The outgoing message is a distribution matching the moments of means
as the random arguments are varied. The formula is proj[p(means) sum_(sample) p(sample) factor(sample,means,precs)]/p(means)
.
Exceptions
Type | Condition |
---|---|
ImproperMessageException |
|
MeanAverageConditional(SparseGaussianList, SparseGaussianList, SparseGammaList, SparseGammaList, SparseGaussianList)
EP message to means
.
Declaration
public static SparseGaussianList MeanAverageConditional(SparseGaussianList sample, SparseGaussianList mean, SparseGammaList precision, SparseGammaList to_precision, SparseGaussianList result)
Parameters
Type | Name | Description |
---|---|---|
SparseGaussianList | sample | Incoming message from |
SparseGaussianList | mean | Incoming message from |
SparseGammaList | precision | Incoming message from |
SparseGammaList | to_precision | Previous outgoing message to |
SparseGaussianList | result | Modified to contain the outgoing message. |
Returns
Type | Description |
---|---|
SparseGaussianList |
|
Remarks
The outgoing message is a distribution matching the moments of means
as the random arguments are varied. The formula is proj[p(means) sum_(sample,precs) p(sample,precs) factor(sample,means,precs)]/p(means)
.
Exceptions
Type | Condition |
---|---|
ImproperMessageException |
|
ImproperMessageException |
|
ImproperMessageException |
|
MeanAverageLogarithm(ISparseList<Double>, ISparseList<Double>, SparseGaussianList)
VMP message to means
.
Declaration
public static SparseGaussianList MeanAverageLogarithm(ISparseList<double> sample, ISparseList<double> precision, SparseGaussianList result)
Parameters
Type | Name | Description |
---|---|---|
ISparseList<Double> | sample | Constant value for |
ISparseList<Double> | precision | Constant value for |
SparseGaussianList | result | Modified to contain the outgoing message. |
Returns
Type | Description |
---|---|
SparseGaussianList |
|
Remarks
The outgoing message is the factor viewed as a function of means
conditioned on the given values.
MeanAverageLogarithm(ISparseList<Double>, SparseGammaList, SparseGaussianList)
VMP message to means
.
Declaration
public static SparseGaussianList MeanAverageLogarithm(ISparseList<double> sample, SparseGammaList precision, SparseGaussianList result)
Parameters
Type | Name | Description |
---|---|---|
ISparseList<Double> | sample | Constant value for |
SparseGammaList | precision | Incoming message from |
SparseGaussianList | result | Modified to contain the outgoing message. |
Returns
Type | Description |
---|---|
SparseGaussianList |
|
Remarks
The outgoing message is the exponential of the average log-factor value, where the average is over all arguments except means
. The formula is exp(sum_(precs) p(precs) log(factor(sample,means,precs)))
.
Exceptions
Type | Condition |
---|---|
ImproperMessageException |
|
MeanAverageLogarithm(SparseGaussianList, ISparseList<Double>, SparseGaussianList)
VMP message to means
.
Declaration
public static SparseGaussianList MeanAverageLogarithm(SparseGaussianList sample, ISparseList<double> precision, SparseGaussianList result)
Parameters
Type | Name | Description |
---|---|---|
SparseGaussianList | sample | Incoming message from |
ISparseList<Double> | precision | Constant value for |
SparseGaussianList | result | Modified to contain the outgoing message. |
Returns
Type | Description |
---|---|
SparseGaussianList |
|
Remarks
The outgoing message is the exponential of the average log-factor value, where the average is over all arguments except means
. The formula is exp(sum_(sample) p(sample) log(factor(sample,means,precs)))
.
Exceptions
Type | Condition |
---|---|
ImproperMessageException |
|
MeanAverageLogarithm(SparseGaussianList, SparseGammaList, SparseGaussianList)
VMP message to means
.
Declaration
public static SparseGaussianList MeanAverageLogarithm(SparseGaussianList sample, SparseGammaList precision, SparseGaussianList result)
Parameters
Type | Name | Description |
---|---|---|
SparseGaussianList | sample | Incoming message from |
SparseGammaList | precision | Incoming message from |
SparseGaussianList | result | Modified to contain the outgoing message. |
Returns
Type | Description |
---|---|
SparseGaussianList |
|
Remarks
The outgoing message is the exponential of the average log-factor value, where the average is over all arguments except means
. The formula is exp(sum_(sample,precs) p(sample,precs) log(factor(sample,means,precs)))
.
Exceptions
Type | Condition |
---|---|
ImproperMessageException |
|
ImproperMessageException |
|
PrecisionAverageConditional(ISparseList<Double>, ISparseList<Double>, SparseGammaList)
EP message to precs
.
Declaration
public static SparseGammaList PrecisionAverageConditional(ISparseList<double> sample, ISparseList<double> mean, SparseGammaList result)
Parameters
Type | Name | Description |
---|---|---|
ISparseList<Double> | sample | Constant value for |
ISparseList<Double> | mean | Constant value for |
SparseGammaList | result | Modified to contain the outgoing message. |
Returns
Type | Description |
---|---|
SparseGammaList |
|
Remarks
The outgoing message is the factor viewed as a function of precs
conditioned on the given values.
PrecisionAverageConditional(ISparseList<Double>, SparseGaussianList, SparseGammaList, SparseGammaList)
EP message to precs
.
Declaration
public static SparseGammaList PrecisionAverageConditional(ISparseList<double> sample, SparseGaussianList mean, SparseGammaList precision, SparseGammaList result)
Parameters
Type | Name | Description |
---|---|---|
ISparseList<Double> | sample | Constant value for |
SparseGaussianList | mean | Incoming message from |
SparseGammaList | precision | Incoming message from |
SparseGammaList | result | Modified to contain the outgoing message. |
Returns
Type | Description |
---|---|
SparseGammaList |
|
Remarks
The outgoing message is a distribution matching the moments of precs
as the random arguments are varied. The formula is proj[p(precs) sum_(means) p(means) factor(sample,means,precs)]/p(precs)
.
Exceptions
Type | Condition |
---|---|
ImproperMessageException |
|
ImproperMessageException |
|
PrecisionAverageConditional(SparseGaussianList, ISparseList<Double>, SparseGammaList, SparseGammaList)
EP message to precs
.
Declaration
public static SparseGammaList PrecisionAverageConditional(SparseGaussianList sample, ISparseList<double> mean, SparseGammaList precision, SparseGammaList result)
Parameters
Type | Name | Description |
---|---|---|
SparseGaussianList | sample | Incoming message from |
ISparseList<Double> | mean | Constant value for |
SparseGammaList | precision | Incoming message from |
SparseGammaList | result | Modified to contain the outgoing message. |
Returns
Type | Description |
---|---|
SparseGammaList |
|
Remarks
The outgoing message is a distribution matching the moments of precs
as the random arguments are varied. The formula is proj[p(precs) sum_(sample) p(sample) factor(sample,means,precs)]/p(precs)
.
Exceptions
Type | Condition |
---|---|
ImproperMessageException |
|
ImproperMessageException |
|
PrecisionAverageConditional(SparseGaussianList, SparseGaussianList, SparseGammaList, SparseGammaList)
EP message to precs
.
Declaration
public static SparseGammaList PrecisionAverageConditional(SparseGaussianList sample, SparseGaussianList mean, SparseGammaList precision, SparseGammaList result)
Parameters
Type | Name | Description |
---|---|---|
SparseGaussianList | sample | Incoming message from |
SparseGaussianList | mean | Incoming message from |
SparseGammaList | precision | Incoming message from |
SparseGammaList | result | Modified to contain the outgoing message. |
Returns
Type | Description |
---|---|
SparseGammaList |
|
Remarks
The outgoing message is a distribution matching the moments of precs
as the random arguments are varied. The formula is proj[p(precs) sum_(sample,means) p(sample,means) factor(sample,means,precs)]/p(precs)
.
Exceptions
Type | Condition |
---|---|
ImproperMessageException |
|
ImproperMessageException |
|
ImproperMessageException |
|
PrecisionAverageLogarithm(ISparseList<Double>, ISparseList<Double>, SparseGammaList)
VMP message to precs
.
Declaration
public static SparseGammaList PrecisionAverageLogarithm(ISparseList<double> sample, ISparseList<double> mean, SparseGammaList result)
Parameters
Type | Name | Description |
---|---|---|
ISparseList<Double> | sample | Constant value for |
ISparseList<Double> | mean | Constant value for |
SparseGammaList | result | Modified to contain the outgoing message. |
Returns
Type | Description |
---|---|
SparseGammaList |
|
Remarks
The outgoing message is the factor viewed as a function of precs
conditioned on the given values.
PrecisionAverageLogarithm(ISparseList<Double>, SparseGaussianList, SparseGammaList)
VMP message to precs
.
Declaration
public static SparseGammaList PrecisionAverageLogarithm(ISparseList<double> sample, SparseGaussianList mean, SparseGammaList result)
Parameters
Type | Name | Description |
---|---|---|
ISparseList<Double> | sample | Constant value for |
SparseGaussianList | mean | Incoming message from |
SparseGammaList | result | Modified to contain the outgoing message. |
Returns
Type | Description |
---|---|
SparseGammaList |
|
Remarks
The outgoing message is the exponential of the average log-factor value, where the average is over all arguments except precs
. The formula is exp(sum_(means) p(means) log(factor(sample,means,precs)))
.
Exceptions
Type | Condition |
---|---|
ImproperMessageException |
|
PrecisionAverageLogarithm(SparseGaussianList, ISparseList<Double>, SparseGammaList)
VMP message to precs
.
Declaration
public static SparseGammaList PrecisionAverageLogarithm(SparseGaussianList sample, ISparseList<double> mean, SparseGammaList result)
Parameters
Type | Name | Description |
---|---|---|
SparseGaussianList | sample | Incoming message from |
ISparseList<Double> | mean | Constant value for |
SparseGammaList | result | Modified to contain the outgoing message. |
Returns
Type | Description |
---|---|
SparseGammaList |
|
Remarks
The outgoing message is the exponential of the average log-factor value, where the average is over all arguments except precs
. The formula is exp(sum_(sample) p(sample) log(factor(sample,means,precs)))
.
Exceptions
Type | Condition |
---|---|
ImproperMessageException |
|
PrecisionAverageLogarithm(SparseGaussianList, SparseGaussianList, SparseGammaList)
VMP message to precs
.
Declaration
public static SparseGammaList PrecisionAverageLogarithm(SparseGaussianList sample, SparseGaussianList mean, SparseGammaList result)
Parameters
Type | Name | Description |
---|---|---|
SparseGaussianList | sample | Incoming message from |
SparseGaussianList | mean | Incoming message from |
SparseGammaList | result | Modified to contain the outgoing message. |
Returns
Type | Description |
---|---|
SparseGammaList |
|
Remarks
The outgoing message is the exponential of the average log-factor value, where the average is over all arguments except precs
. The formula is exp(sum_(sample,means) p(sample,means) log(factor(sample,means,precs)))
.
Exceptions
Type | Condition |
---|---|
ImproperMessageException |
|
ImproperMessageException |
|
SampleAverageConditional(ISparseList<Double>, ISparseList<Double>, SparseGaussianList)
EP message to sample
.
Declaration
public static SparseGaussianList SampleAverageConditional(ISparseList<double> mean, ISparseList<double> precision, SparseGaussianList result)
Parameters
Type | Name | Description |
---|---|---|
ISparseList<Double> | mean | Constant value for |
ISparseList<Double> | precision | Constant value for |
SparseGaussianList | result | Modified to contain the outgoing message. |
Returns
Type | Description |
---|---|
SparseGaussianList |
|
Remarks
The outgoing message is the factor viewed as a function of sample
conditioned on the given values.
SampleAverageConditional(SparseGaussianList, ISparseList<Double>, SparseGammaList, SparseGammaList, SparseGaussianList)
EP message to sample
.
Declaration
public static SparseGaussianList SampleAverageConditional(SparseGaussianList sample, ISparseList<double> mean, SparseGammaList precision, SparseGammaList to_precision, SparseGaussianList result)
Parameters
Type | Name | Description |
---|---|---|
SparseGaussianList | sample | Incoming message from |
ISparseList<Double> | mean | Constant value for |
SparseGammaList | precision | Incoming message from |
SparseGammaList | to_precision | Previous outgoing message to |
SparseGaussianList | result | Modified to contain the outgoing message. |
Returns
Type | Description |
---|---|
SparseGaussianList |
|
Remarks
The outgoing message is a distribution matching the moments of sample
as the random arguments are varied. The formula is proj[p(sample) sum_(precs) p(precs) factor(sample,means,precs)]/p(sample)
.
Exceptions
Type | Condition |
---|---|
ImproperMessageException |
|
SampleAverageConditional(SparseGaussianList, ISparseList<Double>, SparseGaussianList)
EP message to sample
.
Declaration
public static SparseGaussianList SampleAverageConditional(SparseGaussianList mean, ISparseList<double> precision, SparseGaussianList result)
Parameters
Type | Name | Description |
---|---|---|
SparseGaussianList | mean | Incoming message from |
ISparseList<Double> | precision | Constant value for |
SparseGaussianList | result | Modified to contain the outgoing message. |
Returns
Type | Description |
---|---|
SparseGaussianList |
|
Remarks
The outgoing message is a distribution matching the moments of sample
as the random arguments are varied. The formula is proj[p(sample) sum_(means) p(means) factor(sample,means,precs)]/p(sample)
.
Exceptions
Type | Condition |
---|---|
ImproperMessageException |
|
SampleAverageConditional(SparseGaussianList, SparseGaussianList, SparseGammaList, SparseGammaList, SparseGaussianList)
EP message to sample
.
Declaration
public static SparseGaussianList SampleAverageConditional(SparseGaussianList sample, SparseGaussianList mean, SparseGammaList precision, SparseGammaList to_precision, SparseGaussianList result)
Parameters
Type | Name | Description |
---|---|---|
SparseGaussianList | sample | Incoming message from |
SparseGaussianList | mean | Incoming message from |
SparseGammaList | precision | Incoming message from |
SparseGammaList | to_precision | Previous outgoing message to |
SparseGaussianList | result | Modified to contain the outgoing message. |
Returns
Type | Description |
---|---|
SparseGaussianList |
|
Remarks
The outgoing message is a distribution matching the moments of sample
as the random arguments are varied. The formula is proj[p(sample) sum_(means,precs) p(means,precs) factor(sample,means,precs)]/p(sample)
.
Exceptions
Type | Condition |
---|---|
ImproperMessageException |
|
ImproperMessageException |
|
SampleAverageConditionalInit(ISparseList<Double>)
Declaration
public static SparseGaussianList SampleAverageConditionalInit(ISparseList<double> mean)
Parameters
Type | Name | Description |
---|---|---|
ISparseList<Double> | mean | Constant value for |
Returns
Type | Description |
---|---|
SparseGaussianList |
Remarks
SampleAverageConditionalInit(SparseGaussianList)
Declaration
public static SparseGaussianList SampleAverageConditionalInit(SparseGaussianList mean)
Parameters
Type | Name | Description |
---|---|---|
SparseGaussianList | mean | Incoming message from |
Returns
Type | Description |
---|---|
SparseGaussianList |
Remarks
SampleAverageLogarithm(ISparseList<Double>, ISparseList<Double>, SparseGaussianList)
VMP message to sample
.
Declaration
public static SparseGaussianList SampleAverageLogarithm(ISparseList<double> mean, ISparseList<double> precision, SparseGaussianList result)
Parameters
Type | Name | Description |
---|---|---|
ISparseList<Double> | mean | Constant value for |
ISparseList<Double> | precision | Constant value for |
SparseGaussianList | result | Modified to contain the outgoing message. |
Returns
Type | Description |
---|---|
SparseGaussianList |
|
Remarks
The outgoing message is the factor viewed as a function of sample
conditioned on the given values.
SampleAverageLogarithm(ISparseList<Double>, SparseGammaList, SparseGaussianList)
VMP message to sample
.
Declaration
public static SparseGaussianList SampleAverageLogarithm(ISparseList<double> mean, SparseGammaList precision, SparseGaussianList result)
Parameters
Type | Name | Description |
---|---|---|
ISparseList<Double> | mean | Constant value for |
SparseGammaList | precision | Incoming message from |
SparseGaussianList | result | Modified to contain the outgoing message. |
Returns
Type | Description |
---|---|
SparseGaussianList |
|
Remarks
The outgoing message is the exponential of the average log-factor value, where the average is over all arguments except sample
. The formula is exp(sum_(precs) p(precs) log(factor(sample,means,precs)))
.
Exceptions
Type | Condition |
---|---|
ImproperMessageException |
|
SampleAverageLogarithm(SparseGaussianList, ISparseList<Double>, SparseGaussianList)
VMP message to sample
.
Declaration
public static SparseGaussianList SampleAverageLogarithm(SparseGaussianList mean, ISparseList<double> precision, SparseGaussianList result)
Parameters
Type | Name | Description |
---|---|---|
SparseGaussianList | mean | Incoming message from |
ISparseList<Double> | precision | Constant value for |
SparseGaussianList | result | Modified to contain the outgoing message. |
Returns
Type | Description |
---|---|
SparseGaussianList |
|
Remarks
The outgoing message is the exponential of the average log-factor value, where the average is over all arguments except sample
. The formula is exp(sum_(means) p(means) log(factor(sample,means,precs)))
.
Exceptions
Type | Condition |
---|---|
ImproperMessageException |
|
SampleAverageLogarithm(SparseGaussianList, SparseGammaList, SparseGaussianList)
VMP message to sample
.
Declaration
public static SparseGaussianList SampleAverageLogarithm(SparseGaussianList mean, SparseGammaList precision, SparseGaussianList result)
Parameters
Type | Name | Description |
---|---|---|
SparseGaussianList | mean | Incoming message from |
SparseGammaList | precision | Incoming message from |
SparseGaussianList | result | Modified to contain the outgoing message. |
Returns
Type | Description |
---|---|
SparseGaussianList |
|
Remarks
The outgoing message is the exponential of the average log-factor value, where the average is over all arguments except sample
. The formula is exp(sum_(means,precs) p(means,precs) log(factor(sample,means,precs)))
.
Exceptions
Type | Condition |
---|---|
ImproperMessageException |
|
ImproperMessageException |
|
SampleAverageLogarithmInit(ISparseList<Double>)
Declaration
public static SparseGaussianList SampleAverageLogarithmInit(ISparseList<double> mean)
Parameters
Type | Name | Description |
---|---|---|
ISparseList<Double> | mean | Constant value for |
Returns
Type | Description |
---|---|
SparseGaussianList |
Remarks
SampleAverageLogarithmInit(SparseGaussianList)
Declaration
public static SparseGaussianList SampleAverageLogarithmInit(SparseGaussianList mean)
Parameters
Type | Name | Description |
---|---|---|
SparseGaussianList | mean | Incoming message from |
Returns
Type | Description |
---|---|
SparseGaussianList |
Remarks