Search Results for

    Show / Hide Table of Contents

    Class SparseGPOp

    Provides outgoing messages for FunctionEvaluate(IFunction, Vector), given random arguments to the function.

    Inheritance
    Object
    SparseGPOp
    Inherited Members
    Object.Equals(Object)
    Object.Equals(Object, Object)
    Object.GetHashCode()
    Object.GetType()
    Object.MemberwiseClone()
    Object.ReferenceEquals(Object, Object)
    Object.ToString()
    Namespace: Microsoft.ML.Probabilistic.Factors
    Assembly: Microsoft.ML.Probabilistic.dll
    Syntax
    [FactorMethod(typeof(Factor), "FunctionEvaluate", new Type[]{typeof(IFunction), typeof(Vector)})]
    [Quality(QualityBand.Preview)]
    public static class SparseGPOp

    Methods

    AverageLogFactor(Double, IFunction, Vector)

    Evidence message for VMP.

    Declaration
    public static double AverageLogFactor(double y, IFunction func, Vector x)
    Parameters
    Type Name Description
    Double y

    Constant value for y.

    IFunction func

    Constant value for func.

    Vector x

    Constant value for x.

    Returns
    Type Description
    Double

    Zero.

    Remarks

    The formula for the result is log(factor(y,func,x)). Adding up these values across all factors and variables gives the log-evidence estimate for VMP.

    FuncAverageConditional(Gaussian, SparseGP, Vector, SparseGP)

    EP message to func.

    Declaration
    public static SparseGP FuncAverageConditional(Gaussian y, SparseGP func, Vector x, SparseGP result)
    Parameters
    Type Name Description
    Gaussian y

    Incoming message from y. Must be a proper distribution. If uniform, the result will be uniform.

    SparseGP func

    Incoming message from func. Must be a proper distribution. If uniform, the result will be uniform.

    Vector x

    Constant value for x.

    SparseGP result

    Modified to contain the outgoing message.

    Returns
    Type Description
    SparseGP

    result

    Remarks

    The outgoing message is a distribution matching the moments of func as the random arguments are varied. The formula is proj[p(func) sum_(y) p(y) factor(y,func,x)]/p(func).

    Exceptions
    Type Condition
    ImproperMessageException

    y is not a proper distribution.

    ImproperMessageException

    func is not a proper distribution.

    FuncAverageConditional(Double, SparseGP, Vector, SparseGP)

    EP message to func.

    Declaration
    public static SparseGP FuncAverageConditional(double y, SparseGP func, Vector x, SparseGP result)
    Parameters
    Type Name Description
    Double y

    Constant value for y.

    SparseGP func

    Incoming message from func. Must be a proper distribution. If uniform, the result will be uniform.

    Vector x

    Constant value for x.

    SparseGP result

    Modified to contain the outgoing message.

    Returns
    Type Description
    SparseGP

    result

    Remarks

    The outgoing message is the factor viewed as a function of func conditioned on the given values.

    Exceptions
    Type Condition
    ImproperMessageException

    func is not a proper distribution.

    LogAverageFactor(Double, IFunction, Vector)

    Evidence message for EP.

    Declaration
    public static double LogAverageFactor(double y, IFunction func, Vector x)
    Parameters
    Type Name Description
    Double y

    Constant value for y.

    IFunction func

    Constant value for func.

    Vector x

    Constant value for x.

    Returns
    Type Description
    Double

    Logarithm of the factor's average value across the given argument distributions.

    Remarks

    The formula for the result is log(factor(y,func,x)).

    LogAverageFactor(Double, SparseGP, Vector)

    Evidence message for EP.

    Declaration
    public static double LogAverageFactor(double y, SparseGP func, Vector x)
    Parameters
    Type Name Description
    Double y

    Constant value for y.

    SparseGP func

    Incoming message from func.

    Vector x

    Constant value for x.

    Returns
    Type Description
    Double

    Logarithm of the factor's average value across the given argument distributions.

    Remarks

    The formula for the result is log(sum_(func) p(func) factor(y,func,x)).

    LogEvidenceRatio(Gaussian)

    Evidence message for EP.

    Declaration
    public static double LogEvidenceRatio(Gaussian y)
    Parameters
    Type Name Description
    Gaussian y

    Incoming message from y.

    Returns
    Type Description
    Double

    Logarithm of the factor's contribution the EP model evidence.

    Remarks

    The formula for the result is log(sum_(y) p(y) factor(y,func,x) / sum_y p(y) messageTo(y)). Adding up these values across all factors and variables gives the log-evidence estimate for EP.

    LogEvidenceRatio(Double, IFunction, Vector)

    Evidence message for EP.

    Declaration
    public static double LogEvidenceRatio(double y, IFunction func, Vector x)
    Parameters
    Type Name Description
    Double y

    Constant value for y.

    IFunction func

    Constant value for func.

    Vector x

    Constant value for x.

    Returns
    Type Description
    Double

    Logarithm of the factor's contribution the EP model evidence.

    Remarks

    The formula for the result is log(factor(y,func,x)). Adding up these values across all factors and variables gives the log-evidence estimate for EP.

    LogEvidenceRatio(Double, SparseGP, Vector)

    Evidence message for EP.

    Declaration
    public static double LogEvidenceRatio(double y, SparseGP func, Vector x)
    Parameters
    Type Name Description
    Double y

    Constant value for y.

    SparseGP func

    Incoming message from func.

    Vector x

    Constant value for x.

    Returns
    Type Description
    Double

    Logarithm of the factor's contribution the EP model evidence.

    Remarks

    The formula for the result is log(sum_(func) p(func) factor(y,func,x)). Adding up these values across all factors and variables gives the log-evidence estimate for EP.

    YAverageConditional(SparseGP, Vector)

    EP message to y.

    Declaration
    public static Gaussian YAverageConditional(SparseGP func, Vector x)
    Parameters
    Type Name Description
    SparseGP func

    Incoming message from func. Must be a proper distribution. If uniform, the result will be uniform.

    Vector x

    Constant value for x.

    Returns
    Type Description
    Gaussian

    The outgoing EP message to the y argument.

    Remarks

    The outgoing message is a distribution matching the moments of y as the random arguments are varied. The formula is proj[p(y) sum_(func) p(func) factor(y,func,x)]/p(y).

    Exceptions
    Type Condition
    ImproperMessageException

    func is not a proper distribution.

    In This Article
    Back to top Copyright © .NET Foundation. All rights reserved.