Search Results for

    Show / Hide Table of Contents

    Class SoftmaxOp_Taylor

    Provides outgoing messages for Softmax(IList<Double>), given random arguments to the function.

    Inheritance
    Object
    SoftmaxOp_Taylor
    Inherited Members
    Object.Equals(Object)
    Object.Equals(Object, Object)
    Object.GetHashCode()
    Object.GetType()
    Object.MemberwiseClone()
    Object.ReferenceEquals(Object, Object)
    Object.ToString()
    Namespace: Microsoft.ML.Probabilistic.Factors
    Assembly: Microsoft.ML.Probabilistic.dll
    Syntax
    [FactorMethod(typeof(MMath), "Softmax", new Type[]{typeof(IList<double>)})]
    [Quality(QualityBand.Preview)]
    public static class SoftmaxOp_Taylor

    Methods

    AverageLogFactor<GaussianList>(GaussianList, Dirichlet, Dirichlet)

    Evidence message for VMP.

    Declaration
    public static double AverageLogFactor<GaussianList>(GaussianList x, Dirichlet softmax, Dirichlet to_softmax)
        where GaussianList : IList<Gaussian>
    Parameters
    Type Name Description
    GaussianList x

    Incoming message from x.

    Dirichlet softmax

    Incoming message from softmax.

    Dirichlet to_softmax

    Previous outgoing message to softmax.

    Returns
    Type Description
    Double

    Zero.

    Type Parameters
    Name Description
    GaussianList

    The type of the incoming message from x.

    Remarks

    In Variational Message Passing, the evidence contribution of a deterministic factor is zero. Adding up these values across all factors and variables gives the log-evidence estimate for VMP.

    SoftmaxAverageLogarithm<GaussianList>(GaussianList, Dirichlet)

    VMP message to softmax.

    Declaration
    public static Dirichlet SoftmaxAverageLogarithm<GaussianList>([SkipIfAllUniform] GaussianList x, Dirichlet result)
        where GaussianList : IList<Gaussian>
    Parameters
    Type Name Description
    GaussianList x

    Incoming message from x. Must be a proper distribution. If all elements are uniform, the result will be uniform.

    Dirichlet result

    Modified to contain the outgoing message.

    Returns
    Type Description
    Dirichlet

    result

    Type Parameters
    Name Description
    GaussianList

    The type of the incoming message from x.

    Remarks

    The outgoing message is a distribution matching the moments of softmax as the random arguments are varied. The formula is proj[sum_(x) p(x) factor(softmax,x)].

    Exceptions
    Type Condition
    ImproperMessageException

    x is not a proper distribution.

    XAverageLogarithm<GaussianList>(Dirichlet, IList<Gaussian>, GaussianList)

    VMP message to x.

    Declaration
    public static GaussianList XAverageLogarithm<GaussianList>(Dirichlet softmax, IList<Gaussian> x, GaussianList to_x)
        where GaussianList : IList<Gaussian>
    Parameters
    Type Name Description
    Dirichlet softmax

    Incoming message from softmax. Must be a proper distribution. If any element is uniform, the result will be uniform.

    IList<Gaussian> x

    Incoming message from x.

    GaussianList to_x

    Previous outgoing message to x.

    Returns
    Type Description
    GaussianList

    The outgoing VMP message to the x argument.

    Type Parameters
    Name Description
    GaussianList

    The type of the incoming message from x.

    Remarks

    The outgoing message is the factor viewed as a function of x with softmax integrated out. The formula is sum_softmax p(softmax) factor(softmax,x).

    Exceptions
    Type Condition
    ImproperMessageException

    softmax is not a proper distribution.

    In This Article
    Back to top Copyright © .NET Foundation. All rights reserved.