Class SoftmaxOp_KM11_Sparse
Provides outgoing messages for Softmax(IList<Double>), given random arguments to the function.
Inherited Members
Namespace: Microsoft.ML.Probabilistic.Factors
Assembly: Microsoft.ML.Probabilistic.dll
Syntax
[FactorMethod(typeof(MMath), "Softmax", new Type[]{typeof(IList<double>)})]
[Quality(QualityBand.Preview)]
[Buffers(new string[]{"A"})]
public static class SoftmaxOp_KM11_Sparse
Remarks
This implementation uses the bound in Knowles and Minka (2011), followed by nonconjugate VMP. This approach is linear in the dimension K. This will replace SaulJordanSoftmaxOp_NCVMP once the functionality is confirmed to be equivalent.
Methods
A(IList<Gaussian>, IList<Double>)
Update the buffer A
.
Declaration
public static IList<double> A(IList<Gaussian> x, IList<double> a)
Parameters
Type | Name | Description |
---|---|---|
IList<Gaussian> | x | Incoming message from |
IList<Double> | a | Buffer |
Returns
Type | Description |
---|---|
IList<Double> | New value of buffer |
Remarks
Exceptions
Type | Condition |
---|---|
ImproperMessageException |
|
AInit(IList<Gaussian>)
Initialize the buffer A
.
Declaration
public static IList<double> AInit(IList<Gaussian> x)
Parameters
Type | Name | Description |
---|---|---|
IList<Gaussian> | x | Incoming message from |
Returns
Type | Description |
---|---|
IList<Double> | Initial value of buffer |
Remarks
AverageLogFactor<GaussianList>(GaussianList, IList<Double>, Dirichlet, Dirichlet)
Evidence message for VMP.
Declaration
public static double AverageLogFactor<GaussianList>(GaussianList x, IList<double> a, Dirichlet softmax, Dirichlet to_softmax)
where GaussianList : IList<Gaussian>
Parameters
Type | Name | Description |
---|---|---|
GaussianList | x | Incoming message from |
IList<Double> | a | Buffer |
Dirichlet | softmax | Incoming message from |
Dirichlet | to_softmax | Previous outgoing message to |
Returns
Type | Description |
---|---|
Double | Zero. |
Type Parameters
Name | Description |
---|---|
GaussianList | The type of the incoming message from |
Remarks
In Variational Message Passing, the evidence contribution of a deterministic factor is zero. Adding up these values across all factors and variables gives the log-evidence estimate for VMP.
logSumExpFull(IEnumerable<Gaussian>, IEnumerable<Double>)
Declaration
public static double logSumExpFull(IEnumerable<Gaussian> x, IEnumerable<double> a)
Parameters
Type | Name | Description |
---|---|---|
IEnumerable<Gaussian> | x | |
IEnumerable<Double> | a |
Returns
Type | Description |
---|---|
Double |
SoftmaxAverageLogarithm<GaussianList>(GaussianList, IList<Double>, Dirichlet)
VMP message to softmax
.
Declaration
public static Dirichlet SoftmaxAverageLogarithm<GaussianList>([SkipIfAllUniform] GaussianList x, IList<double> a, Dirichlet result)
where GaussianList : IList<Gaussian>
Parameters
Type | Name | Description |
---|---|---|
GaussianList | x | Incoming message from |
IList<Double> | a | Buffer |
Dirichlet | result | Modified to contain the outgoing message. |
Returns
Type | Description |
---|---|
Dirichlet |
|
Type Parameters
Name | Description |
---|---|
GaussianList | The type of the incoming message from |
Remarks
The outgoing message is a distribution matching the moments of softmax
as the random arguments are varied. The formula is proj[sum_(x) p(x) factor(softmax,x)]
.
Exceptions
Type | Condition |
---|---|
ImproperMessageException |
|
XAverageLogarithm<GaussianList>(Dirichlet, GaussianList, GaussianList, IList<Double>)
VMP message to x
.
Declaration
public static GaussianList XAverageLogarithm<GaussianList>(Dirichlet softmax, GaussianList x, GaussianList to_x, IList<double> a)
where GaussianList : IList<Gaussian>
Parameters
Type | Name | Description |
---|---|---|
Dirichlet | softmax | Incoming message from |
GaussianList | x | Incoming message from |
GaussianList | to_x | Previous outgoing message to |
IList<Double> | a | Buffer |
Returns
Type | Description |
---|---|
GaussianList | The outgoing VMP message to the |
Type Parameters
Name | Description |
---|---|
GaussianList | The type of the incoming message from |
Remarks
The outgoing message is the factor viewed as a function of x
with softmax
integrated out. The formula is sum_softmax p(softmax) factor(softmax,x)
.
Exceptions
Type | Condition |
---|---|
ImproperMessageException |
|