Class ProductGaussianBetaVmpOp
Provides outgoing messages for Product(Double, Double), given random arguments to the function.
Inherited Members
Namespace: Microsoft.ML.Probabilistic.Factors
Assembly: Microsoft.ML.Probabilistic.dll
Syntax
[FactorMethod(typeof(Factor), "Product", new Type[]{typeof(double), typeof(double)})]
[Quality(QualityBand.Experimental)]
public static class ProductGaussianBetaVmpOp
Remarks
Implements nonconjugate VMP messages for multiplying a Gaussian variable (a) with a Beta variable (b).
Fields
damping
How much damping to use to prevent improper messages.
Declaration
public static double damping
Field Value
| Type | Description |
|---|---|
| Double |
Methods
AAverageLogarithm(Gaussian, Beta)
VMP message to a.
Declaration
public static Gaussian AAverageLogarithm(Gaussian Product, Beta B)
Parameters
| Type | Name | Description |
|---|---|---|
| Gaussian | Product | Incoming message from |
| Beta | B | Incoming message from |
Returns
| Type | Description |
|---|---|
| Gaussian | The outgoing VMP message to the |
Remarks
The outgoing message is the exponential of the average log-factor value, where the average is over all arguments except a. Because the factor is deterministic, product is integrated out before taking the logarithm. The formula is exp(sum_(b) p(b) log(sum_product p(product) factor(product,a,b))).
Exceptions
| Type | Condition |
|---|---|
| ImproperMessageException |
|
| ImproperMessageException |
|
AAverageLogarithm(Double, Beta)
VMP message to a.
Declaration
[NotSupported("Variational Message Passing does not support a Product factor with fixed output and two random inputs.")]
public static Gaussian AAverageLogarithm(double Product, Beta B)
Parameters
| Type | Name | Description |
|---|---|---|
| Double | Product | Constant value for |
| Beta | B | Incoming message from |
Returns
| Type | Description |
|---|---|
| Gaussian | The outgoing VMP message to the |
Remarks
The outgoing message is the exponential of the average log-factor value, where the average is over all arguments except a. The formula is exp(sum_(b) p(b) log(factor(product,a,b))).
Exceptions
| Type | Condition |
|---|---|
| ImproperMessageException |
|
BAverageLogarithm(Gaussian, Gaussian, Beta, Beta)
VMP message to b.
Declaration
public static Beta BAverageLogarithm(Gaussian Product, Gaussian A, Beta B, Beta to_B)
Parameters
| Type | Name | Description |
|---|---|---|
| Gaussian | Product | Incoming message from |
| Gaussian | A | Incoming message from |
| Beta | B | Incoming message from |
| Beta | to_B | Previous outgoing message to |
Returns
| Type | Description |
|---|---|
| Beta | The outgoing VMP message to the |
Remarks
The outgoing message is the exponential of the average log-factor value, where the average is over all arguments except b. Because the factor is deterministic, product is integrated out before taking the logarithm. The formula is exp(sum_(a) p(a) log(sum_product p(product) factor(product,a,b))).
Exceptions
| Type | Condition |
|---|---|
| ImproperMessageException |
|
| ImproperMessageException |
|
| ImproperMessageException |
|
BAverageLogarithm(Gaussian, Double, Beta, Beta)
VMP message to b.
Declaration
public static Beta BAverageLogarithm(Gaussian Product, double A, Beta B, Beta result)
Parameters
| Type | Name | Description |
|---|---|---|
| Gaussian | Product | Incoming message from |
| Double | A | Constant value for |
| Beta | B | Incoming message from |
| Beta | result | Modified to contain the outgoing message. |
Returns
| Type | Description |
|---|---|
| Beta |
|
Remarks
The outgoing message is the factor viewed as a function of b with product integrated out. The formula is sum_product p(product) factor(product,a,b).
Exceptions
| Type | Condition |
|---|---|
| ImproperMessageException |
|
| ImproperMessageException |
|
BAverageLogarithm(Double, Gaussian)
VMP message to b.
Declaration
[NotSupported("Variational Message Passing does not support a Product factor with fixed output and two random inputs.")]
public static Beta BAverageLogarithm(double Product, Gaussian A)
Parameters
| Type | Name | Description |
|---|---|---|
| Double | Product | Constant value for |
| Gaussian | A | Incoming message from |
Returns
| Type | Description |
|---|---|
| Beta | The outgoing VMP message to the |
Remarks
The outgoing message is the exponential of the average log-factor value, where the average is over all arguments except b. The formula is exp(sum_(a) p(a) log(factor(product,a,b))).
BAverageLogarithm(Double, Double)
VMP message to b.
Declaration
public static Beta BAverageLogarithm(double Product, double A)
Parameters
| Type | Name | Description |
|---|---|---|
| Double | Product | Constant value for |
| Double | A | Constant value for |
Returns
| Type | Description |
|---|---|
| Beta | The outgoing VMP message to the |
Remarks
The outgoing message is the factor viewed as a function of b conditioned on the given values.
ProductAverageLogarithm(Gaussian, Beta)
VMP message to product.
Declaration
public static Gaussian ProductAverageLogarithm(Gaussian A, Beta B)
Parameters
| Type | Name | Description |
|---|---|---|
| Gaussian | A | Incoming message from |
| Beta | B | Incoming message from |
Returns
| Type | Description |
|---|---|
| Gaussian | The outgoing VMP message to the |
Remarks
The outgoing message is a distribution matching the moments of product as the random arguments are varied. The formula is proj[sum_(a,b) p(a,b) factor(product,a,b)].
Exceptions
| Type | Condition |
|---|---|
| ImproperMessageException |
|
| ImproperMessageException |
|
ProductAverageLogarithm(Double, Beta)
VMP message to product.
Declaration
public static Gaussian ProductAverageLogarithm(double A, Beta B)
Parameters
| Type | Name | Description |
|---|---|---|
| Double | A | Constant value for |
| Beta | B | Incoming message from |
Returns
| Type | Description |
|---|---|
| Gaussian | The outgoing VMP message to the |
Remarks
The outgoing message is a distribution matching the moments of product as the random arguments are varied. The formula is proj[sum_(b) p(b) factor(product,a,b)].
Exceptions
| Type | Condition |
|---|---|
| ImproperMessageException |
|