Class ProductGaussianBetaVmpOp
Provides outgoing messages for Product(Double, Double), given random arguments to the function.
Inherited Members
Namespace: Microsoft.ML.Probabilistic.Factors
Assembly: Microsoft.ML.Probabilistic.dll
Syntax
[FactorMethod(typeof(Factor), "Product", new Type[]{typeof(double), typeof(double)})]
[Quality(QualityBand.Experimental)]
public static class ProductGaussianBetaVmpOp
Remarks
Implements nonconjugate VMP messages for multiplying a Gaussian variable (a) with a Beta variable (b).
Fields
damping
How much damping to use to prevent improper messages.
Declaration
public static double damping
Field Value
Type | Description |
---|---|
Double |
Methods
AAverageLogarithm(Gaussian, Beta)
VMP message to a
.
Declaration
public static Gaussian AAverageLogarithm(Gaussian Product, Beta B)
Parameters
Type | Name | Description |
---|---|---|
Gaussian | Product | Incoming message from |
Beta | B | Incoming message from |
Returns
Type | Description |
---|---|
Gaussian | The outgoing VMP message to the |
Remarks
The outgoing message is the exponential of the average log-factor value, where the average is over all arguments except a
. Because the factor is deterministic, product
is integrated out before taking the logarithm. The formula is exp(sum_(b) p(b) log(sum_product p(product) factor(product,a,b)))
.
Exceptions
Type | Condition |
---|---|
ImproperMessageException |
|
ImproperMessageException |
|
AAverageLogarithm(Double, Beta)
VMP message to a
.
Declaration
[NotSupported("Variational Message Passing does not support a Product factor with fixed output and two random inputs.")]
public static Gaussian AAverageLogarithm(double Product, Beta B)
Parameters
Type | Name | Description |
---|---|---|
Double | Product | Constant value for |
Beta | B | Incoming message from |
Returns
Type | Description |
---|---|
Gaussian | The outgoing VMP message to the |
Remarks
The outgoing message is the exponential of the average log-factor value, where the average is over all arguments except a
. The formula is exp(sum_(b) p(b) log(factor(product,a,b)))
.
Exceptions
Type | Condition |
---|---|
ImproperMessageException |
|
BAverageLogarithm(Gaussian, Gaussian, Beta, Beta)
VMP message to b
.
Declaration
public static Beta BAverageLogarithm(Gaussian Product, Gaussian A, Beta B, Beta to_B)
Parameters
Type | Name | Description |
---|---|---|
Gaussian | Product | Incoming message from |
Gaussian | A | Incoming message from |
Beta | B | Incoming message from |
Beta | to_B | Previous outgoing message to |
Returns
Type | Description |
---|---|
Beta | The outgoing VMP message to the |
Remarks
The outgoing message is the exponential of the average log-factor value, where the average is over all arguments except b
. Because the factor is deterministic, product
is integrated out before taking the logarithm. The formula is exp(sum_(a) p(a) log(sum_product p(product) factor(product,a,b)))
.
Exceptions
Type | Condition |
---|---|
ImproperMessageException |
|
ImproperMessageException |
|
ImproperMessageException |
|
BAverageLogarithm(Gaussian, Double, Beta, Beta)
VMP message to b
.
Declaration
public static Beta BAverageLogarithm(Gaussian Product, double A, Beta B, Beta result)
Parameters
Type | Name | Description |
---|---|---|
Gaussian | Product | Incoming message from |
Double | A | Constant value for |
Beta | B | Incoming message from |
Beta | result | Modified to contain the outgoing message. |
Returns
Type | Description |
---|---|
Beta |
|
Remarks
The outgoing message is the factor viewed as a function of b
with product
integrated out. The formula is sum_product p(product) factor(product,a,b)
.
Exceptions
Type | Condition |
---|---|
ImproperMessageException |
|
ImproperMessageException |
|
BAverageLogarithm(Double, Gaussian)
VMP message to b
.
Declaration
[NotSupported("Variational Message Passing does not support a Product factor with fixed output and two random inputs.")]
public static Beta BAverageLogarithm(double Product, Gaussian A)
Parameters
Type | Name | Description |
---|---|---|
Double | Product | Constant value for |
Gaussian | A | Incoming message from |
Returns
Type | Description |
---|---|
Beta | The outgoing VMP message to the |
Remarks
The outgoing message is the exponential of the average log-factor value, where the average is over all arguments except b
. The formula is exp(sum_(a) p(a) log(factor(product,a,b)))
.
BAverageLogarithm(Double, Double)
VMP message to b
.
Declaration
public static Beta BAverageLogarithm(double Product, double A)
Parameters
Type | Name | Description |
---|---|---|
Double | Product | Constant value for |
Double | A | Constant value for |
Returns
Type | Description |
---|---|
Beta | The outgoing VMP message to the |
Remarks
The outgoing message is the factor viewed as a function of b
conditioned on the given values.
ProductAverageLogarithm(Gaussian, Beta)
VMP message to product
.
Declaration
public static Gaussian ProductAverageLogarithm(Gaussian A, Beta B)
Parameters
Type | Name | Description |
---|---|---|
Gaussian | A | Incoming message from |
Beta | B | Incoming message from |
Returns
Type | Description |
---|---|
Gaussian | The outgoing VMP message to the |
Remarks
The outgoing message is a distribution matching the moments of product
as the random arguments are varied. The formula is proj[sum_(a,b) p(a,b) factor(product,a,b)]
.
Exceptions
Type | Condition |
---|---|
ImproperMessageException |
|
ImproperMessageException |
|
ProductAverageLogarithm(Double, Beta)
VMP message to product
.
Declaration
public static Gaussian ProductAverageLogarithm(double A, Beta B)
Parameters
Type | Name | Description |
---|---|---|
Double | A | Constant value for |
Beta | B | Incoming message from |
Returns
Type | Description |
---|---|
Gaussian | The outgoing VMP message to the |
Remarks
The outgoing message is a distribution matching the moments of product
as the random arguments are varied. The formula is proj[sum_(b) p(b) factor(product,a,b)]
.
Exceptions
Type | Condition |
---|---|
ImproperMessageException |
|