Search Results for

    Show / Hide Table of Contents

    Class PowerOp

    Provides outgoing messages for Pow(Double, Double), given random arguments to the function.

    Inheritance
    Object
    PowerOp
    Inherited Members
    Object.Equals(Object)
    Object.Equals(Object, Object)
    Object.GetHashCode()
    Object.GetType()
    Object.MemberwiseClone()
    Object.ReferenceEquals(Object, Object)
    Object.ToString()
    Namespace: Microsoft.ML.Probabilistic.Factors
    Assembly: Microsoft.ML.Probabilistic.dll
    Syntax
    [FactorMethod(typeof(Math), "Pow", new Type[]{typeof(double), typeof(double)})]
    [Quality(QualityBand.Experimental)]
    public static class PowerOp

    Methods

    FromMeanPowerAndMeanLog(Double, Double, Double)

    Declaration
    public static Gamma FromMeanPowerAndMeanLog(double meanPower, double meanLog, double power)
    Parameters
    Type Name Description
    Double meanPower
    Double meanLog
    Double power
    Returns
    Type Description
    Gamma

    GammaFromGammaPower(GammaPower)

    Declaration
    public static Gamma GammaFromGammaPower(GammaPower message)
    Parameters
    Type Name Description
    GammaPower message
    Returns
    Type Description
    Gamma

    GammaFromMeanAndMeanInverse(Double, Double)

    Declaration
    public static Gamma GammaFromMeanAndMeanInverse(double mean, double meanInverse)
    Parameters
    Type Name Description
    Double mean
    Double meanInverse
    Returns
    Type Description
    Gamma

    GammaPowerFromDifferentPower(GammaPower, Double)

    Declaration
    public static GammaPower GammaPowerFromDifferentPower(GammaPower message, double newPower)
    Parameters
    Type Name Description
    GammaPower message
    Double newPower
    Returns
    Type Description
    GammaPower

    LogAverageFactor(GammaPower, GammaPower, Double)

    Evidence message for EP.

    Declaration
    public static double LogAverageFactor(GammaPower pow, GammaPower x, double y)
    Parameters
    Type Name Description
    GammaPower pow

    Incoming message from pow.

    GammaPower x

    Incoming message from x.

    Double y

    Constant value for y.

    Returns
    Type Description
    Double

    Logarithm of the factor's average value across the given argument distributions.

    Remarks

    The formula for the result is log(sum_(pow,x) p(pow,x) factor(pow,x,y)).

    PowAverageConditional(Gamma, Double)

    EP message to pow.

    Declaration
    public static GammaPower PowAverageConditional(Gamma x, double y)
    Parameters
    Type Name Description
    Gamma x

    Incoming message from x. Must be a proper distribution. If uniform, the result will be uniform.

    Double y

    Constant value for y.

    Returns
    Type Description
    GammaPower

    The outgoing EP message to the pow argument.

    Remarks

    The outgoing message is a distribution matching the moments of pow as the random arguments are varied. The formula is proj[p(pow) sum_(x) p(x) factor(pow,x,y)]/p(pow).

    Exceptions
    Type Condition
    ImproperMessageException

    x is not a proper distribution.

    PowAverageConditional(Gamma, Double, Gamma)

    EP message to pow.

    Declaration
    public static Gamma PowAverageConditional(Gamma x, double y, Gamma result)
    Parameters
    Type Name Description
    Gamma x

    Incoming message from x. Must be a proper distribution. If uniform, the result will be uniform.

    Double y

    Constant value for y.

    Gamma result

    Modified to contain the outgoing message.

    Returns
    Type Description
    Gamma

    result

    Remarks

    The outgoing message is a distribution matching the moments of pow as the random arguments are varied. The formula is proj[p(pow) sum_(x) p(x) factor(pow,x,y)]/p(pow).

    Exceptions
    Type Condition
    ImproperMessageException

    x is not a proper distribution.

    PowAverageConditional(GammaPower, Double, GammaPower)

    EP message to pow.

    Declaration
    public static GammaPower PowAverageConditional(GammaPower x, double y, GammaPower result)
    Parameters
    Type Name Description
    GammaPower x

    Incoming message from x. Must be a proper distribution. If uniform, the result will be uniform.

    Double y

    Constant value for y.

    GammaPower result

    Modified to contain the outgoing message.

    Returns
    Type Description
    GammaPower

    result

    Remarks

    The outgoing message is a distribution matching the moments of pow as the random arguments are varied. The formula is proj[p(pow) sum_(x) p(x) factor(pow,x,y)]/p(pow).

    Exceptions
    Type Condition
    ImproperMessageException

    x is not a proper distribution.

    PowAverageConditional(Pareto, Double)

    EP message to pow.

    Declaration
    public static Pareto PowAverageConditional(Pareto x, double y)
    Parameters
    Type Name Description
    Pareto x

    Incoming message from x.

    Double y

    Constant value for y.

    Returns
    Type Description
    Pareto

    The outgoing EP message to the pow argument.

    Remarks

    The outgoing message is a distribution matching the moments of pow as the random arguments are varied. The formula is proj[p(pow) sum_(x) p(x) factor(pow,x,y)]/p(pow).

    PowAverageConditional(TruncatedGamma, Double)

    EP message to pow.

    Declaration
    public static Gamma PowAverageConditional(TruncatedGamma x, double y)
    Parameters
    Type Name Description
    TruncatedGamma x

    Incoming message from x. Must be a proper distribution. If uniform, the result will be uniform.

    Double y

    Constant value for y.

    Returns
    Type Description
    Gamma

    The outgoing EP message to the pow argument.

    Remarks

    The outgoing message is a distribution matching the moments of pow as the random arguments are varied. The formula is proj[p(pow) sum_(x) p(x) factor(pow,x,y)]/p(pow).

    Exceptions
    Type Condition
    ImproperMessageException

    x is not a proper distribution.

    PowAverageConditional(TruncatedGamma, Double, GammaPower)

    Declaration
    public static GammaPower PowAverageConditional(TruncatedGamma x, double y, GammaPower result)
    Parameters
    Type Name Description
    TruncatedGamma x
    Double y
    GammaPower result
    Returns
    Type Description
    GammaPower

    PowAverageLogarithm(Gamma, Double)

    VMP message to pow.

    Declaration
    public static GammaPower PowAverageLogarithm(Gamma x, double y)
    Parameters
    Type Name Description
    Gamma x

    Incoming message from x. Must be a proper distribution. If uniform, the result will be uniform.

    Double y

    Constant value for y.

    Returns
    Type Description
    GammaPower

    The outgoing VMP message to the pow argument.

    Remarks

    The outgoing message is a distribution matching the moments of pow as the random arguments are varied. The formula is proj[sum_(x) p(x) factor(pow,x,y)].

    Exceptions
    Type Condition
    ImproperMessageException

    x is not a proper distribution.

    PowAverageLogarithm(GammaPower, Double, GammaPower)

    VMP message to pow.

    Declaration
    public static GammaPower PowAverageLogarithm(GammaPower x, double y, GammaPower result)
    Parameters
    Type Name Description
    GammaPower x

    Incoming message from x. Must be a proper distribution. If uniform, the result will be uniform.

    Double y

    Constant value for y.

    GammaPower result

    Modified to contain the outgoing message.

    Returns
    Type Description
    GammaPower

    result

    Remarks

    The outgoing message is a distribution matching the moments of pow as the random arguments are varied. The formula is proj[sum_(x) p(x) factor(pow,x,y)].

    Exceptions
    Type Condition
    ImproperMessageException

    x is not a proper distribution.

    XAverageConditional(Gamma, Gamma, Double, Gamma)

    EP message to x.

    Declaration
    public static Gamma XAverageConditional(Gamma pow, Gamma x, double y, Gamma result)
    Parameters
    Type Name Description
    Gamma pow

    Incoming message from pow. Must be a proper distribution. If uniform, the result will be uniform.

    Gamma x

    Incoming message from x.

    Double y

    Constant value for y.

    Gamma result

    Modified to contain the outgoing message.

    Returns
    Type Description
    Gamma

    result

    Remarks

    The outgoing message is a distribution matching the moments of x as the random arguments are varied. The formula is proj[p(x) sum_(pow) p(pow) factor(pow,x,y)]/p(x).

    Exceptions
    Type Condition
    ImproperMessageException

    pow is not a proper distribution.

    XAverageConditional(Gamma, TruncatedGamma, Double)

    Declaration
    public static TruncatedGamma XAverageConditional(Gamma pow, TruncatedGamma x, double y)
    Parameters
    Type Name Description
    Gamma pow
    TruncatedGamma x
    Double y
    Returns
    Type Description
    TruncatedGamma

    XAverageConditional(GammaPower, GammaPower, Double, GammaPower)

    EP message to x.

    Declaration
    public static GammaPower XAverageConditional(GammaPower pow, GammaPower x, double y, GammaPower result)
    Parameters
    Type Name Description
    GammaPower pow

    Incoming message from pow. Must be a proper distribution. If uniform, the result will be uniform.

    GammaPower x

    Incoming message from x.

    Double y

    Constant value for y.

    GammaPower result

    Modified to contain the outgoing message.

    Returns
    Type Description
    GammaPower

    result

    Remarks

    The outgoing message is a distribution matching the moments of x as the random arguments are varied. The formula is proj[p(x) sum_(pow) p(pow) factor(pow,x,y)]/p(x).

    Exceptions
    Type Condition
    ImproperMessageException

    pow is not a proper distribution.

    XAverageConditional(GammaPower, TruncatedGamma, Double)

    EP message to x.

    Declaration
    public static TruncatedGamma XAverageConditional(GammaPower pow, TruncatedGamma x, double y)
    Parameters
    Type Name Description
    GammaPower pow

    Incoming message from pow. Must be a proper distribution. If uniform, the result will be uniform.

    TruncatedGamma x

    Incoming message from x.

    Double y

    Constant value for y.

    Returns
    Type Description
    TruncatedGamma

    The outgoing EP message to the x argument.

    Remarks

    The outgoing message is a distribution matching the moments of x as the random arguments are varied. The formula is proj[p(x) sum_(pow) p(pow) factor(pow,x,y)]/p(x).

    Exceptions
    Type Condition
    ImproperMessageException

    pow is not a proper distribution.

    XAverageConditional(GammaPower, Double)

    EP message to x.

    Declaration
    public static Gamma XAverageConditional(GammaPower pow, double y)
    Parameters
    Type Name Description
    GammaPower pow

    Incoming message from pow. Must be a proper distribution. If uniform, the result will be uniform.

    Double y

    Constant value for y.

    Returns
    Type Description
    Gamma

    The outgoing EP message to the x argument.

    Remarks

    The outgoing message is a distribution matching the moments of x as the random arguments are varied. The formula is proj[p(x) sum_(pow) p(pow) factor(pow,x,y)]/p(x).

    Exceptions
    Type Condition
    ImproperMessageException

    pow is not a proper distribution.

    XAverageConditional(Pareto, Gamma, Double)

    EP message to x.

    Declaration
    public static Gamma XAverageConditional(Pareto pow, Gamma x, double y)
    Parameters
    Type Name Description
    Pareto pow

    Incoming message from pow.

    Gamma x

    Incoming message from x.

    Double y

    Constant value for y.

    Returns
    Type Description
    Gamma

    The outgoing EP message to the x argument.

    Remarks

    The outgoing message is a distribution matching the moments of x as the random arguments are varied. The formula is proj[p(x) sum_(pow) p(pow) factor(pow,x,y)]/p(x).

    XAverageLogarithm(GammaPower, GammaPower, Double, GammaPower)

    VMP message to x.

    Declaration
    public static GammaPower XAverageLogarithm(GammaPower pow, GammaPower x, double y, GammaPower result)
    Parameters
    Type Name Description
    GammaPower pow

    Incoming message from pow. Must be a proper distribution. If uniform, the result will be uniform.

    GammaPower x

    Incoming message from x.

    Double y

    Constant value for y.

    GammaPower result

    Modified to contain the outgoing message.

    Returns
    Type Description
    GammaPower

    result

    Remarks

    The outgoing message is the factor viewed as a function of x with pow integrated out. The formula is sum_pow p(pow) factor(pow,x,y).

    Exceptions
    Type Condition
    ImproperMessageException

    pow is not a proper distribution.

    XAverageLogarithm(GammaPower, Double)

    VMP message to x.

    Declaration
    public static Gamma XAverageLogarithm(GammaPower pow, double y)
    Parameters
    Type Name Description
    GammaPower pow

    Incoming message from pow. Must be a proper distribution. If uniform, the result will be uniform.

    Double y

    Constant value for y.

    Returns
    Type Description
    Gamma

    The outgoing VMP message to the x argument.

    Remarks

    The outgoing message is the factor viewed as a function of x with pow integrated out. The formula is sum_pow p(pow) factor(pow,x,y).

    Exceptions
    Type Condition
    ImproperMessageException

    pow is not a proper distribution.

    In This Article
    Back to top Copyright © .NET Foundation. All rights reserved.