Class PlusWrappedGaussianOp
Provides outgoing messages for the following factors:
, given random arguments to the function.Inherited Members
Namespace: Microsoft.ML.Probabilistic.Factors
Assembly: Microsoft.ML.Probabilistic.dll
Syntax
[FactorMethod(typeof(Factor), "Plus", new Type[]{typeof(double), typeof(double)}, Default = true)]
[FactorMethod(new string[]{"A", "Sum", "B"}, typeof(Factor), "Difference", new Type[]{typeof(double), typeof(double)}, Default = true)]
[Quality(QualityBand.Mature)]
public static class PlusWrappedGaussianOp
Methods
AAverageConditional(WrappedGaussian, WrappedGaussian)
EP message to difference
.
Declaration
public static WrappedGaussian AAverageConditional(WrappedGaussian sum, WrappedGaussian b)
Parameters
Type | Name | Description |
---|---|---|
WrappedGaussian | sum | Incoming message from |
WrappedGaussian | b | Incoming message from |
Returns
Type | Description |
---|---|
WrappedGaussian | The outgoing EP message to the |
Remarks
The outgoing message is a distribution matching the moments of difference
as the random arguments are varied. The formula is proj[p(difference) sum_(a,b) p(a,b) factor(difference,a,b)]/p(difference)
.
Exceptions
Type | Condition |
---|---|
ImproperMessageException |
|
ImproperMessageException |
|
AAverageConditional(WrappedGaussian, Double)
EP message to difference
.
Declaration
public static WrappedGaussian AAverageConditional(WrappedGaussian sum, double b)
Parameters
Type | Name | Description |
---|---|---|
WrappedGaussian | sum | Incoming message from |
Double | b | Constant value for |
Returns
Type | Description |
---|---|
WrappedGaussian | The outgoing EP message to the |
Remarks
The outgoing message is a distribution matching the moments of difference
as the random arguments are varied. The formula is proj[p(difference) sum_(a) p(a) factor(difference,a,b)]/p(difference)
.
Exceptions
Type | Condition |
---|---|
ImproperMessageException |
|
AAverageLogarithm(WrappedGaussian, WrappedGaussian)
VMP message to difference
.
Declaration
public static WrappedGaussian AAverageLogarithm(WrappedGaussian sum, WrappedGaussian b)
Parameters
Type | Name | Description |
---|---|---|
WrappedGaussian | sum | Incoming message from |
WrappedGaussian | b | Incoming message from |
Returns
Type | Description |
---|---|
WrappedGaussian | The outgoing VMP message to the |
Remarks
The outgoing message is a distribution matching the moments of difference
as the random arguments are varied. The formula is proj[sum_(a,b) p(a,b) factor(difference,a,b)]
.
Exceptions
Type | Condition |
---|---|
ImproperMessageException |
|
ImproperMessageException |
|
AAverageLogarithm(WrappedGaussian, Double)
VMP message to difference
.
Declaration
public static WrappedGaussian AAverageLogarithm(WrappedGaussian sum, double b)
Parameters
Type | Name | Description |
---|---|---|
WrappedGaussian | sum | Incoming message from |
Double | b | Constant value for |
Returns
Type | Description |
---|---|
WrappedGaussian | The outgoing VMP message to the |
Remarks
The outgoing message is a distribution matching the moments of difference
as the random arguments are varied. The formula is proj[sum_(a) p(a) factor(difference,a,b)]
.
Exceptions
Type | Condition |
---|---|
ImproperMessageException |
|
AverageLogFactor(WrappedGaussian)
Evidence message for VMP.
Declaration
public static double AverageLogFactor(WrappedGaussian sum)
Parameters
Type | Name | Description |
---|---|---|
WrappedGaussian | sum | Incoming message from |
Returns
Type | Description |
---|---|
Double | Zero. |
Remarks
In Variational Message Passing, the evidence contribution of a deterministic factor is zero. Adding up these values across all factors and variables gives the log-evidence estimate for VMP.
BAverageConditional(WrappedGaussian, WrappedGaussian)
EP message to b
.
Declaration
public static WrappedGaussian BAverageConditional(WrappedGaussian sum, WrappedGaussian a)
Parameters
Type | Name | Description |
---|---|---|
WrappedGaussian | sum | Incoming message from |
WrappedGaussian | a | Incoming message from |
Returns
Type | Description |
---|---|
WrappedGaussian | The outgoing EP message to the |
Remarks
The outgoing message is a distribution matching the moments of b
as the random arguments are varied. The formula is proj[p(b) sum_(a,difference) p(a,difference) factor(difference,a,b)]/p(b)
.
Exceptions
Type | Condition |
---|---|
ImproperMessageException |
|
ImproperMessageException |
|
BAverageConditional(WrappedGaussian, Double)
EP message to b
.
Declaration
public static WrappedGaussian BAverageConditional(WrappedGaussian sum, double a)
Parameters
Type | Name | Description |
---|---|---|
WrappedGaussian | sum | Incoming message from |
Double | a | Constant value for |
Returns
Type | Description |
---|---|
WrappedGaussian | The outgoing EP message to the |
Remarks
The outgoing message is a distribution matching the moments of b
as the random arguments are varied. The formula is proj[p(b) sum_(a) p(a) factor(difference,a,b)]/p(b)
.
Exceptions
Type | Condition |
---|---|
ImproperMessageException |
|
BAverageLogarithm(WrappedGaussian, WrappedGaussian)
VMP message to b
.
Declaration
public static WrappedGaussian BAverageLogarithm(WrappedGaussian sum, WrappedGaussian a)
Parameters
Type | Name | Description |
---|---|---|
WrappedGaussian | sum | Incoming message from |
WrappedGaussian | a | Incoming message from |
Returns
Type | Description |
---|---|
WrappedGaussian | The outgoing VMP message to the |
Remarks
The outgoing message is the exponential of the average log-factor value, where the average is over all arguments except b
. Because the factor is deterministic, difference
is integrated out before taking the logarithm. The formula is exp(sum_(a) p(a) log(sum_difference p(difference) factor(difference,a,b)))
.
Exceptions
Type | Condition |
---|---|
ImproperMessageException |
|
ImproperMessageException |
|
BAverageLogarithm(WrappedGaussian, Double)
VMP message to b
.
Declaration
public static WrappedGaussian BAverageLogarithm(WrappedGaussian sum, double a)
Parameters
Type | Name | Description |
---|---|---|
WrappedGaussian | sum | Incoming message from |
Double | a | Constant value for |
Returns
Type | Description |
---|---|
WrappedGaussian | The outgoing VMP message to the |
Remarks
The outgoing message is the exponential of the average log-factor value, where the average is over all arguments except b
. The formula is exp(sum_(a) p(a) log(factor(difference,a,b)))
.
Exceptions
Type | Condition |
---|---|
ImproperMessageException |
|
SumAverageConditional(WrappedGaussian, WrappedGaussian)
EP message to a
.
Declaration
public static WrappedGaussian SumAverageConditional(WrappedGaussian a, WrappedGaussian b)
Parameters
Type | Name | Description |
---|---|---|
WrappedGaussian | a | Incoming message from |
WrappedGaussian | b | Incoming message from |
Returns
Type | Description |
---|---|
WrappedGaussian | The outgoing EP message to the |
Remarks
The outgoing message is a distribution matching the moments of a
as the random arguments are varied. The formula is proj[p(a) sum_(difference,b) p(difference,b) factor(difference,a,b)]/p(a)
.
Exceptions
Type | Condition |
---|---|
ImproperMessageException |
|
ImproperMessageException |
|
SumAverageConditional(WrappedGaussian, Double)
EP message to a
.
Declaration
public static WrappedGaussian SumAverageConditional(WrappedGaussian a, double b)
Parameters
Type | Name | Description |
---|---|---|
WrappedGaussian | a | Incoming message from |
Double | b | Constant value for |
Returns
Type | Description |
---|---|
WrappedGaussian | The outgoing EP message to the |
Remarks
The outgoing message is a distribution matching the moments of a
as the random arguments are varied. The formula is proj[p(a) sum_(difference) p(difference) factor(difference,a,b)]/p(a)
.
Exceptions
Type | Condition |
---|---|
ImproperMessageException |
|
SumAverageConditional(Double, WrappedGaussian)
EP message to a
.
Declaration
public static WrappedGaussian SumAverageConditional(double a, WrappedGaussian b)
Parameters
Type | Name | Description |
---|---|---|
Double | a | Constant value for |
WrappedGaussian | b | Incoming message from |
Returns
Type | Description |
---|---|
WrappedGaussian | The outgoing EP message to the |
Remarks
The outgoing message is a distribution matching the moments of a
as the random arguments are varied. The formula is proj[p(a) sum_(b) p(b) factor(difference,a,b)]/p(a)
.
Exceptions
Type | Condition |
---|---|
ImproperMessageException |
|
SumAverageLogarithm(WrappedGaussian, WrappedGaussian)
VMP message to a
.
Declaration
public static WrappedGaussian SumAverageLogarithm(WrappedGaussian a, WrappedGaussian b)
Parameters
Type | Name | Description |
---|---|---|
WrappedGaussian | a | Incoming message from |
WrappedGaussian | b | Incoming message from |
Returns
Type | Description |
---|---|
WrappedGaussian | The outgoing VMP message to the |
Remarks
The outgoing message is the exponential of the average log-factor value, where the average is over all arguments except a
. Because the factor is deterministic, difference
is integrated out before taking the logarithm. The formula is exp(sum_(b) p(b) log(sum_difference p(difference) factor(difference,a,b)))
.
Exceptions
Type | Condition |
---|---|
ImproperMessageException |
|
ImproperMessageException |
|
SumAverageLogarithm(WrappedGaussian, Double)
VMP message to a
.
Declaration
public static WrappedGaussian SumAverageLogarithm(WrappedGaussian a, double b)
Parameters
Type | Name | Description |
---|---|---|
WrappedGaussian | a | Incoming message from |
Double | b | Constant value for |
Returns
Type | Description |
---|---|
WrappedGaussian | The outgoing VMP message to the |
Remarks
The outgoing message is the factor viewed as a function of a
with difference
integrated out. The formula is sum_difference p(difference) factor(difference,a,b)
.
Exceptions
Type | Condition |
---|---|
ImproperMessageException |
|
SumAverageLogarithm(Double, WrappedGaussian)
VMP message to a
.
Declaration
public static WrappedGaussian SumAverageLogarithm(double a, WrappedGaussian b)
Parameters
Type | Name | Description |
---|---|---|
Double | a | Constant value for |
WrappedGaussian | b | Incoming message from |
Returns
Type | Description |
---|---|
WrappedGaussian | The outgoing VMP message to the |
Remarks
The outgoing message is the exponential of the average log-factor value, where the average is over all arguments except a
. The formula is exp(sum_(b) p(b) log(factor(difference,a,b)))
.
Exceptions
Type | Condition |
---|---|
ImproperMessageException |
|