Search Results for

    Show / Hide Table of Contents

    Class PlusWrappedGaussianOp

    Provides outgoing messages for the following factors:

    • Difference(Double, Double)
    • Plus(Double, Double)
    , given random arguments to the function.

    Inheritance
    Object
    PlusWrappedGaussianOp
    Inherited Members
    Object.Equals(Object)
    Object.Equals(Object, Object)
    Object.GetHashCode()
    Object.GetType()
    Object.MemberwiseClone()
    Object.ReferenceEquals(Object, Object)
    Object.ToString()
    Namespace: Microsoft.ML.Probabilistic.Factors
    Assembly: Microsoft.ML.Probabilistic.dll
    Syntax
    [FactorMethod(typeof(Factor), "Plus", new Type[]{typeof(double), typeof(double)}, Default = true)]
    [FactorMethod(new string[]{"A", "Sum", "B"}, typeof(Factor), "Difference", new Type[]{typeof(double), typeof(double)}, Default = true)]
    [Quality(QualityBand.Mature)]
    public static class PlusWrappedGaussianOp

    Methods

    AAverageConditional(WrappedGaussian, WrappedGaussian)

    EP message to difference.

    Declaration
    public static WrappedGaussian AAverageConditional(WrappedGaussian sum, WrappedGaussian b)
    Parameters
    Type Name Description
    WrappedGaussian sum

    Incoming message from a. Must be a proper distribution. If uniform, the result will be uniform.

    WrappedGaussian b

    Incoming message from b. Must be a proper distribution. If uniform, the result will be uniform.

    Returns
    Type Description
    WrappedGaussian

    The outgoing EP message to the difference argument.

    Remarks

    The outgoing message is a distribution matching the moments of difference as the random arguments are varied. The formula is proj[p(difference) sum_(a,b) p(a,b) factor(difference,a,b)]/p(difference).

    Exceptions
    Type Condition
    ImproperMessageException

    sum is not a proper distribution.

    ImproperMessageException

    b is not a proper distribution.

    AAverageConditional(WrappedGaussian, Double)

    EP message to difference.

    Declaration
    public static WrappedGaussian AAverageConditional(WrappedGaussian sum, double b)
    Parameters
    Type Name Description
    WrappedGaussian sum

    Incoming message from a. Must be a proper distribution. If uniform, the result will be uniform.

    Double b

    Constant value for b.

    Returns
    Type Description
    WrappedGaussian

    The outgoing EP message to the difference argument.

    Remarks

    The outgoing message is a distribution matching the moments of difference as the random arguments are varied. The formula is proj[p(difference) sum_(a) p(a) factor(difference,a,b)]/p(difference).

    Exceptions
    Type Condition
    ImproperMessageException

    sum is not a proper distribution.

    AAverageLogarithm(WrappedGaussian, WrappedGaussian)

    VMP message to difference.

    Declaration
    public static WrappedGaussian AAverageLogarithm(WrappedGaussian sum, WrappedGaussian b)
    Parameters
    Type Name Description
    WrappedGaussian sum

    Incoming message from a. Must be a proper distribution. If uniform, the result will be uniform.

    WrappedGaussian b

    Incoming message from b. Must be a proper distribution. If uniform, the result will be uniform.

    Returns
    Type Description
    WrappedGaussian

    The outgoing VMP message to the difference argument.

    Remarks

    The outgoing message is a distribution matching the moments of difference as the random arguments are varied. The formula is proj[sum_(a,b) p(a,b) factor(difference,a,b)].

    Exceptions
    Type Condition
    ImproperMessageException

    sum is not a proper distribution.

    ImproperMessageException

    b is not a proper distribution.

    AAverageLogarithm(WrappedGaussian, Double)

    VMP message to difference.

    Declaration
    public static WrappedGaussian AAverageLogarithm(WrappedGaussian sum, double b)
    Parameters
    Type Name Description
    WrappedGaussian sum

    Incoming message from a. Must be a proper distribution. If uniform, the result will be uniform.

    Double b

    Constant value for b.

    Returns
    Type Description
    WrappedGaussian

    The outgoing VMP message to the difference argument.

    Remarks

    The outgoing message is a distribution matching the moments of difference as the random arguments are varied. The formula is proj[sum_(a) p(a) factor(difference,a,b)].

    Exceptions
    Type Condition
    ImproperMessageException

    sum is not a proper distribution.

    AverageLogFactor(WrappedGaussian)

    Evidence message for VMP.

    Declaration
    public static double AverageLogFactor(WrappedGaussian sum)
    Parameters
    Type Name Description
    WrappedGaussian sum

    Incoming message from a.

    Returns
    Type Description
    Double

    Zero.

    Remarks

    In Variational Message Passing, the evidence contribution of a deterministic factor is zero. Adding up these values across all factors and variables gives the log-evidence estimate for VMP.

    BAverageConditional(WrappedGaussian, WrappedGaussian)

    EP message to b.

    Declaration
    public static WrappedGaussian BAverageConditional(WrappedGaussian sum, WrappedGaussian a)
    Parameters
    Type Name Description
    WrappedGaussian sum

    Incoming message from a. Must be a proper distribution. If uniform, the result will be uniform.

    WrappedGaussian a

    Incoming message from difference. Must be a proper distribution. If uniform, the result will be uniform.

    Returns
    Type Description
    WrappedGaussian

    The outgoing EP message to the b argument.

    Remarks

    The outgoing message is a distribution matching the moments of b as the random arguments are varied. The formula is proj[p(b) sum_(a,difference) p(a,difference) factor(difference,a,b)]/p(b).

    Exceptions
    Type Condition
    ImproperMessageException

    sum is not a proper distribution.

    ImproperMessageException

    a is not a proper distribution.

    BAverageConditional(WrappedGaussian, Double)

    EP message to b.

    Declaration
    public static WrappedGaussian BAverageConditional(WrappedGaussian sum, double a)
    Parameters
    Type Name Description
    WrappedGaussian sum

    Incoming message from a. Must be a proper distribution. If uniform, the result will be uniform.

    Double a

    Constant value for difference.

    Returns
    Type Description
    WrappedGaussian

    The outgoing EP message to the b argument.

    Remarks

    The outgoing message is a distribution matching the moments of b as the random arguments are varied. The formula is proj[p(b) sum_(a) p(a) factor(difference,a,b)]/p(b).

    Exceptions
    Type Condition
    ImproperMessageException

    sum is not a proper distribution.

    BAverageLogarithm(WrappedGaussian, WrappedGaussian)

    VMP message to b.

    Declaration
    public static WrappedGaussian BAverageLogarithm(WrappedGaussian sum, WrappedGaussian a)
    Parameters
    Type Name Description
    WrappedGaussian sum

    Incoming message from a. Must be a proper distribution. If uniform, the result will be uniform.

    WrappedGaussian a

    Incoming message from difference. Must be a proper distribution. If uniform, the result will be uniform.

    Returns
    Type Description
    WrappedGaussian

    The outgoing VMP message to the b argument.

    Remarks

    The outgoing message is the exponential of the average log-factor value, where the average is over all arguments except b. Because the factor is deterministic, difference is integrated out before taking the logarithm. The formula is exp(sum_(a) p(a) log(sum_difference p(difference) factor(difference,a,b))).

    Exceptions
    Type Condition
    ImproperMessageException

    sum is not a proper distribution.

    ImproperMessageException

    a is not a proper distribution.

    BAverageLogarithm(WrappedGaussian, Double)

    VMP message to b.

    Declaration
    public static WrappedGaussian BAverageLogarithm(WrappedGaussian sum, double a)
    Parameters
    Type Name Description
    WrappedGaussian sum

    Incoming message from a. Must be a proper distribution. If uniform, the result will be uniform.

    Double a

    Constant value for difference.

    Returns
    Type Description
    WrappedGaussian

    The outgoing VMP message to the b argument.

    Remarks

    The outgoing message is the exponential of the average log-factor value, where the average is over all arguments except b. The formula is exp(sum_(a) p(a) log(factor(difference,a,b))).

    Exceptions
    Type Condition
    ImproperMessageException

    sum is not a proper distribution.

    SumAverageConditional(WrappedGaussian, WrappedGaussian)

    EP message to a.

    Declaration
    public static WrappedGaussian SumAverageConditional(WrappedGaussian a, WrappedGaussian b)
    Parameters
    Type Name Description
    WrappedGaussian a

    Incoming message from difference. Must be a proper distribution. If uniform, the result will be uniform.

    WrappedGaussian b

    Incoming message from b. Must be a proper distribution. If uniform, the result will be uniform.

    Returns
    Type Description
    WrappedGaussian

    The outgoing EP message to the a argument.

    Remarks

    The outgoing message is a distribution matching the moments of a as the random arguments are varied. The formula is proj[p(a) sum_(difference,b) p(difference,b) factor(difference,a,b)]/p(a).

    Exceptions
    Type Condition
    ImproperMessageException

    a is not a proper distribution.

    ImproperMessageException

    b is not a proper distribution.

    SumAverageConditional(WrappedGaussian, Double)

    EP message to a.

    Declaration
    public static WrappedGaussian SumAverageConditional(WrappedGaussian a, double b)
    Parameters
    Type Name Description
    WrappedGaussian a

    Incoming message from difference. Must be a proper distribution. If uniform, the result will be uniform.

    Double b

    Constant value for b.

    Returns
    Type Description
    WrappedGaussian

    The outgoing EP message to the a argument.

    Remarks

    The outgoing message is a distribution matching the moments of a as the random arguments are varied. The formula is proj[p(a) sum_(difference) p(difference) factor(difference,a,b)]/p(a).

    Exceptions
    Type Condition
    ImproperMessageException

    a is not a proper distribution.

    SumAverageConditional(Double, WrappedGaussian)

    EP message to a.

    Declaration
    public static WrappedGaussian SumAverageConditional(double a, WrappedGaussian b)
    Parameters
    Type Name Description
    Double a

    Constant value for difference.

    WrappedGaussian b

    Incoming message from b. Must be a proper distribution. If uniform, the result will be uniform.

    Returns
    Type Description
    WrappedGaussian

    The outgoing EP message to the a argument.

    Remarks

    The outgoing message is a distribution matching the moments of a as the random arguments are varied. The formula is proj[p(a) sum_(b) p(b) factor(difference,a,b)]/p(a).

    Exceptions
    Type Condition
    ImproperMessageException

    b is not a proper distribution.

    SumAverageLogarithm(WrappedGaussian, WrappedGaussian)

    VMP message to a.

    Declaration
    public static WrappedGaussian SumAverageLogarithm(WrappedGaussian a, WrappedGaussian b)
    Parameters
    Type Name Description
    WrappedGaussian a

    Incoming message from difference. Must be a proper distribution. If uniform, the result will be uniform.

    WrappedGaussian b

    Incoming message from b. Must be a proper distribution. If uniform, the result will be uniform.

    Returns
    Type Description
    WrappedGaussian

    The outgoing VMP message to the a argument.

    Remarks

    The outgoing message is the exponential of the average log-factor value, where the average is over all arguments except a. Because the factor is deterministic, difference is integrated out before taking the logarithm. The formula is exp(sum_(b) p(b) log(sum_difference p(difference) factor(difference,a,b))).

    Exceptions
    Type Condition
    ImproperMessageException

    a is not a proper distribution.

    ImproperMessageException

    b is not a proper distribution.

    SumAverageLogarithm(WrappedGaussian, Double)

    VMP message to a.

    Declaration
    public static WrappedGaussian SumAverageLogarithm(WrappedGaussian a, double b)
    Parameters
    Type Name Description
    WrappedGaussian a

    Incoming message from difference. Must be a proper distribution. If uniform, the result will be uniform.

    Double b

    Constant value for b.

    Returns
    Type Description
    WrappedGaussian

    The outgoing VMP message to the a argument.

    Remarks

    The outgoing message is the factor viewed as a function of a with difference integrated out. The formula is sum_difference p(difference) factor(difference,a,b).

    Exceptions
    Type Condition
    ImproperMessageException

    a is not a proper distribution.

    SumAverageLogarithm(Double, WrappedGaussian)

    VMP message to a.

    Declaration
    public static WrappedGaussian SumAverageLogarithm(double a, WrappedGaussian b)
    Parameters
    Type Name Description
    Double a

    Constant value for difference.

    WrappedGaussian b

    Incoming message from b. Must be a proper distribution. If uniform, the result will be uniform.

    Returns
    Type Description
    WrappedGaussian

    The outgoing VMP message to the a argument.

    Remarks

    The outgoing message is the exponential of the average log-factor value, where the average is over all arguments except a. The formula is exp(sum_(b) p(b) log(factor(difference,a,b))).

    Exceptions
    Type Condition
    ImproperMessageException

    b is not a proper distribution.

    In This Article
    Back to top Copyright © .NET Foundation. All rights reserved.