Class PlusWrappedGaussianOp
Provides outgoing messages for the following factors:
, given random arguments to the function.Inherited Members
Namespace: Microsoft.ML.Probabilistic.Factors
Assembly: Microsoft.ML.Probabilistic.dll
Syntax
[FactorMethod(typeof(Factor), "Plus", new Type[]{typeof(double), typeof(double)}, Default = true)]
[FactorMethod(new string[]{"A", "Sum", "B"}, typeof(Factor), "Difference", new Type[]{typeof(double), typeof(double)}, Default = true)]
[Quality(QualityBand.Mature)]
public static class PlusWrappedGaussianOpMethods
AAverageConditional(WrappedGaussian, WrappedGaussian)
EP message to difference.
Declaration
public static WrappedGaussian AAverageConditional(WrappedGaussian sum, WrappedGaussian b)Parameters
| Type | Name | Description | 
|---|---|---|
| WrappedGaussian | sum | Incoming message from  | 
| WrappedGaussian | b | Incoming message from  | 
Returns
| Type | Description | 
|---|---|
| WrappedGaussian | The outgoing EP message to the  | 
Remarks
The outgoing message is a distribution matching the moments of difference as the random arguments are varied. The formula is proj[p(difference) sum_(a,b) p(a,b) factor(difference,a,b)]/p(difference).
Exceptions
| Type | Condition | 
|---|---|
| ImproperMessageException | 
 | 
| ImproperMessageException | 
 | 
AAverageConditional(WrappedGaussian, Double)
EP message to difference.
Declaration
public static WrappedGaussian AAverageConditional(WrappedGaussian sum, double b)Parameters
| Type | Name | Description | 
|---|---|---|
| WrappedGaussian | sum | Incoming message from  | 
| Double | b | Constant value for  | 
Returns
| Type | Description | 
|---|---|
| WrappedGaussian | The outgoing EP message to the  | 
Remarks
The outgoing message is a distribution matching the moments of difference as the random arguments are varied. The formula is proj[p(difference) sum_(a) p(a) factor(difference,a,b)]/p(difference).
Exceptions
| Type | Condition | 
|---|---|
| ImproperMessageException | 
 | 
AAverageLogarithm(WrappedGaussian, WrappedGaussian)
VMP message to difference.
Declaration
public static WrappedGaussian AAverageLogarithm(WrappedGaussian sum, WrappedGaussian b)Parameters
| Type | Name | Description | 
|---|---|---|
| WrappedGaussian | sum | Incoming message from  | 
| WrappedGaussian | b | Incoming message from  | 
Returns
| Type | Description | 
|---|---|
| WrappedGaussian | The outgoing VMP message to the  | 
Remarks
The outgoing message is a distribution matching the moments of difference as the random arguments are varied. The formula is proj[sum_(a,b) p(a,b) factor(difference,a,b)].
Exceptions
| Type | Condition | 
|---|---|
| ImproperMessageException | 
 | 
| ImproperMessageException | 
 | 
AAverageLogarithm(WrappedGaussian, Double)
VMP message to difference.
Declaration
public static WrappedGaussian AAverageLogarithm(WrappedGaussian sum, double b)Parameters
| Type | Name | Description | 
|---|---|---|
| WrappedGaussian | sum | Incoming message from  | 
| Double | b | Constant value for  | 
Returns
| Type | Description | 
|---|---|
| WrappedGaussian | The outgoing VMP message to the  | 
Remarks
The outgoing message is a distribution matching the moments of difference as the random arguments are varied. The formula is proj[sum_(a) p(a) factor(difference,a,b)].
Exceptions
| Type | Condition | 
|---|---|
| ImproperMessageException | 
 | 
AverageLogFactor(WrappedGaussian)
Evidence message for VMP.
Declaration
public static double AverageLogFactor(WrappedGaussian sum)Parameters
| Type | Name | Description | 
|---|---|---|
| WrappedGaussian | sum | Incoming message from  | 
Returns
| Type | Description | 
|---|---|
| Double | Zero. | 
Remarks
In Variational Message Passing, the evidence contribution of a deterministic factor is zero. Adding up these values across all factors and variables gives the log-evidence estimate for VMP.
BAverageConditional(WrappedGaussian, WrappedGaussian)
EP message to b.
Declaration
public static WrappedGaussian BAverageConditional(WrappedGaussian sum, WrappedGaussian a)Parameters
| Type | Name | Description | 
|---|---|---|
| WrappedGaussian | sum | Incoming message from  | 
| WrappedGaussian | a | Incoming message from  | 
Returns
| Type | Description | 
|---|---|
| WrappedGaussian | The outgoing EP message to the  | 
Remarks
The outgoing message is a distribution matching the moments of b as the random arguments are varied. The formula is proj[p(b) sum_(a,difference) p(a,difference) factor(difference,a,b)]/p(b).
Exceptions
| Type | Condition | 
|---|---|
| ImproperMessageException | 
 | 
| ImproperMessageException | 
 | 
BAverageConditional(WrappedGaussian, Double)
EP message to b.
Declaration
public static WrappedGaussian BAverageConditional(WrappedGaussian sum, double a)Parameters
| Type | Name | Description | 
|---|---|---|
| WrappedGaussian | sum | Incoming message from  | 
| Double | a | Constant value for  | 
Returns
| Type | Description | 
|---|---|
| WrappedGaussian | The outgoing EP message to the  | 
Remarks
The outgoing message is a distribution matching the moments of b as the random arguments are varied. The formula is proj[p(b) sum_(a) p(a) factor(difference,a,b)]/p(b).
Exceptions
| Type | Condition | 
|---|---|
| ImproperMessageException | 
 | 
BAverageLogarithm(WrappedGaussian, WrappedGaussian)
VMP message to b.
Declaration
public static WrappedGaussian BAverageLogarithm(WrappedGaussian sum, WrappedGaussian a)Parameters
| Type | Name | Description | 
|---|---|---|
| WrappedGaussian | sum | Incoming message from  | 
| WrappedGaussian | a | Incoming message from  | 
Returns
| Type | Description | 
|---|---|
| WrappedGaussian | The outgoing VMP message to the  | 
Remarks
The outgoing message is the exponential of the average log-factor value, where the average is over all arguments except b. Because the factor is deterministic, difference is integrated out before taking the logarithm. The formula is exp(sum_(a) p(a) log(sum_difference p(difference) factor(difference,a,b))).
Exceptions
| Type | Condition | 
|---|---|
| ImproperMessageException | 
 | 
| ImproperMessageException | 
 | 
BAverageLogarithm(WrappedGaussian, Double)
VMP message to b.
Declaration
public static WrappedGaussian BAverageLogarithm(WrappedGaussian sum, double a)Parameters
| Type | Name | Description | 
|---|---|---|
| WrappedGaussian | sum | Incoming message from  | 
| Double | a | Constant value for  | 
Returns
| Type | Description | 
|---|---|
| WrappedGaussian | The outgoing VMP message to the  | 
Remarks
The outgoing message is the exponential of the average log-factor value, where the average is over all arguments except b. The formula is exp(sum_(a) p(a) log(factor(difference,a,b))).
Exceptions
| Type | Condition | 
|---|---|
| ImproperMessageException | 
 | 
SumAverageConditional(WrappedGaussian, WrappedGaussian)
EP message to a.
Declaration
public static WrappedGaussian SumAverageConditional(WrappedGaussian a, WrappedGaussian b)Parameters
| Type | Name | Description | 
|---|---|---|
| WrappedGaussian | a | Incoming message from  | 
| WrappedGaussian | b | Incoming message from  | 
Returns
| Type | Description | 
|---|---|
| WrappedGaussian | The outgoing EP message to the  | 
Remarks
The outgoing message is a distribution matching the moments of a as the random arguments are varied. The formula is proj[p(a) sum_(difference,b) p(difference,b) factor(difference,a,b)]/p(a).
Exceptions
| Type | Condition | 
|---|---|
| ImproperMessageException | 
 | 
| ImproperMessageException | 
 | 
SumAverageConditional(WrappedGaussian, Double)
EP message to a.
Declaration
public static WrappedGaussian SumAverageConditional(WrappedGaussian a, double b)Parameters
| Type | Name | Description | 
|---|---|---|
| WrappedGaussian | a | Incoming message from  | 
| Double | b | Constant value for  | 
Returns
| Type | Description | 
|---|---|
| WrappedGaussian | The outgoing EP message to the  | 
Remarks
The outgoing message is a distribution matching the moments of a as the random arguments are varied. The formula is proj[p(a) sum_(difference) p(difference) factor(difference,a,b)]/p(a).
Exceptions
| Type | Condition | 
|---|---|
| ImproperMessageException | 
 | 
SumAverageConditional(Double, WrappedGaussian)
EP message to a.
Declaration
public static WrappedGaussian SumAverageConditional(double a, WrappedGaussian b)Parameters
| Type | Name | Description | 
|---|---|---|
| Double | a | Constant value for  | 
| WrappedGaussian | b | Incoming message from  | 
Returns
| Type | Description | 
|---|---|
| WrappedGaussian | The outgoing EP message to the  | 
Remarks
The outgoing message is a distribution matching the moments of a as the random arguments are varied. The formula is proj[p(a) sum_(b) p(b) factor(difference,a,b)]/p(a).
Exceptions
| Type | Condition | 
|---|---|
| ImproperMessageException | 
 | 
SumAverageLogarithm(WrappedGaussian, WrappedGaussian)
VMP message to a.
Declaration
public static WrappedGaussian SumAverageLogarithm(WrappedGaussian a, WrappedGaussian b)Parameters
| Type | Name | Description | 
|---|---|---|
| WrappedGaussian | a | Incoming message from  | 
| WrappedGaussian | b | Incoming message from  | 
Returns
| Type | Description | 
|---|---|
| WrappedGaussian | The outgoing VMP message to the  | 
Remarks
The outgoing message is the exponential of the average log-factor value, where the average is over all arguments except a. Because the factor is deterministic, difference is integrated out before taking the logarithm. The formula is exp(sum_(b) p(b) log(sum_difference p(difference) factor(difference,a,b))).
Exceptions
| Type | Condition | 
|---|---|
| ImproperMessageException | 
 | 
| ImproperMessageException | 
 | 
SumAverageLogarithm(WrappedGaussian, Double)
VMP message to a.
Declaration
public static WrappedGaussian SumAverageLogarithm(WrappedGaussian a, double b)Parameters
| Type | Name | Description | 
|---|---|---|
| WrappedGaussian | a | Incoming message from  | 
| Double | b | Constant value for  | 
Returns
| Type | Description | 
|---|---|
| WrappedGaussian | The outgoing VMP message to the  | 
Remarks
The outgoing message is the factor viewed as a function of a with difference integrated out. The formula is sum_difference p(difference) factor(difference,a,b).
Exceptions
| Type | Condition | 
|---|---|
| ImproperMessageException | 
 | 
SumAverageLogarithm(Double, WrappedGaussian)
VMP message to a.
Declaration
public static WrappedGaussian SumAverageLogarithm(double a, WrappedGaussian b)Parameters
| Type | Name | Description | 
|---|---|---|
| Double | a | Constant value for  | 
| WrappedGaussian | b | Incoming message from  | 
Returns
| Type | Description | 
|---|---|
| WrappedGaussian | The outgoing VMP message to the  | 
Remarks
The outgoing message is the exponential of the average log-factor value, where the average is over all arguments except a. The formula is exp(sum_(b) p(b) log(factor(difference,a,b))).
Exceptions
| Type | Condition | 
|---|---|
| ImproperMessageException | 
 |