Class PlusTruncatedGaussianOp
Provides outgoing messages for the following factors:
, given random arguments to the function.Inherited Members
Namespace: Microsoft.ML.Probabilistic.Factors
Assembly: Microsoft.ML.Probabilistic.dll
Syntax
[FactorMethod(typeof(Factor), "Plus", new Type[]{typeof(double), typeof(double)}, Default = true)]
[FactorMethod(new string[]{"A", "Sum", "B"}, typeof(Factor), "Difference", new Type[]{typeof(double), typeof(double)}, Default = true)]
[Quality(QualityBand.Mature)]
public static class PlusTruncatedGaussianOp
Methods
AAverageConditional(Gaussian, Gaussian)
EP message to difference
.
Declaration
public static TruncatedGaussian AAverageConditional(Gaussian sum, Gaussian b)
Parameters
Type | Name | Description |
---|---|---|
Gaussian | sum | Incoming message from |
Gaussian | b | Incoming message from |
Returns
Type | Description |
---|---|
TruncatedGaussian | The outgoing EP message to the |
Remarks
The outgoing message is a distribution matching the moments of difference
as the random arguments are varied. The formula is proj[p(difference) sum_(a,b) p(a,b) factor(difference,a,b)]/p(difference)
.
Exceptions
Type | Condition |
---|---|
ImproperMessageException |
|
ImproperMessageException |
|
AAverageConditional(Gaussian, TruncatedGaussian)
EP message to difference
.
Declaration
public static Gaussian AAverageConditional(Gaussian sum, TruncatedGaussian b)
Parameters
Type | Name | Description |
---|---|---|
Gaussian | sum | Incoming message from |
TruncatedGaussian | b | Incoming message from |
Returns
Type | Description |
---|---|
Gaussian | The outgoing EP message to the |
Remarks
The outgoing message is a distribution matching the moments of difference
as the random arguments are varied. The formula is proj[p(difference) sum_(a,b) p(a,b) factor(difference,a,b)]/p(difference)
.
Exceptions
Type | Condition |
---|---|
ImproperMessageException |
|
ImproperMessageException |
|
AAverageConditional(TruncatedGaussian, Double)
EP message to difference
.
Declaration
public static TruncatedGaussian AAverageConditional(TruncatedGaussian sum, double b)
Parameters
Type | Name | Description |
---|---|---|
TruncatedGaussian | sum | Incoming message from |
Double | b | Constant value for |
Returns
Type | Description |
---|---|
TruncatedGaussian | The outgoing EP message to the |
Remarks
The outgoing message is a distribution matching the moments of difference
as the random arguments are varied. The formula is proj[p(difference) sum_(a) p(a) factor(difference,a,b)]/p(difference)
.
Exceptions
Type | Condition |
---|---|
ImproperMessageException |
|
AAverageConditional(Double, TruncatedGaussian)
EP message to difference
.
Declaration
public static TruncatedGaussian AAverageConditional(double sum, TruncatedGaussian b)
Parameters
Type | Name | Description |
---|---|---|
Double | sum | Constant value for |
TruncatedGaussian | b | Incoming message from |
Returns
Type | Description |
---|---|
TruncatedGaussian | The outgoing EP message to the |
Remarks
The outgoing message is a distribution matching the moments of difference
as the random arguments are varied. The formula is proj[p(difference) sum_(b) p(b) factor(difference,a,b)]/p(difference)
.
Exceptions
Type | Condition |
---|---|
ImproperMessageException |
|
BAverageConditional(Gaussian, Gaussian)
EP message to b
.
Declaration
public static TruncatedGaussian BAverageConditional(Gaussian sum, Gaussian a)
Parameters
Type | Name | Description |
---|---|---|
Gaussian | sum | Incoming message from |
Gaussian | a | Incoming message from |
Returns
Type | Description |
---|---|
TruncatedGaussian | The outgoing EP message to the |
Remarks
The outgoing message is a distribution matching the moments of b
as the random arguments are varied. The formula is proj[p(b) sum_(a,difference) p(a,difference) factor(difference,a,b)]/p(b)
.
Exceptions
Type | Condition |
---|---|
ImproperMessageException |
|
ImproperMessageException |
|
BAverageConditional(Gaussian, TruncatedGaussian)
EP message to b
.
Declaration
public static Gaussian BAverageConditional(Gaussian sum, TruncatedGaussian a)
Parameters
Type | Name | Description |
---|---|---|
Gaussian | sum | Incoming message from |
TruncatedGaussian | a | Incoming message from |
Returns
Type | Description |
---|---|
Gaussian | The outgoing EP message to the |
Remarks
The outgoing message is a distribution matching the moments of b
as the random arguments are varied. The formula is proj[p(b) sum_(a,difference) p(a,difference) factor(difference,a,b)]/p(b)
.
Exceptions
Type | Condition |
---|---|
ImproperMessageException |
|
ImproperMessageException |
|
BAverageConditional(TruncatedGaussian, Double)
EP message to b
.
Declaration
public static TruncatedGaussian BAverageConditional(TruncatedGaussian sum, double a)
Parameters
Type | Name | Description |
---|---|---|
TruncatedGaussian | sum | Incoming message from |
Double | a | Constant value for |
Returns
Type | Description |
---|---|
TruncatedGaussian | The outgoing EP message to the |
Remarks
The outgoing message is a distribution matching the moments of b
as the random arguments are varied. The formula is proj[p(b) sum_(a) p(a) factor(difference,a,b)]/p(b)
.
Exceptions
Type | Condition |
---|---|
ImproperMessageException |
|
BAverageConditional(Double, TruncatedGaussian)
EP message to b
.
Declaration
public static TruncatedGaussian BAverageConditional(double sum, TruncatedGaussian a)
Parameters
Type | Name | Description |
---|---|---|
Double | sum | Constant value for |
TruncatedGaussian | a | Incoming message from |
Returns
Type | Description |
---|---|
TruncatedGaussian | The outgoing EP message to the |
Remarks
The outgoing message is a distribution matching the moments of b
as the random arguments are varied. The formula is proj[p(b) sum_(difference) p(difference) factor(difference,a,b)]/p(b)
.
Exceptions
Type | Condition |
---|---|
ImproperMessageException |
|
LogAverageFactor(TruncatedGaussian, Double, Double)
Evidence message for EP.
Declaration
public static double LogAverageFactor(TruncatedGaussian sum, double a, double b)
Parameters
Type | Name | Description |
---|---|---|
TruncatedGaussian | sum | Incoming message from |
Double | a | Constant value for |
Double | b | Constant value for |
Returns
Type | Description |
---|---|
Double | Logarithm of the factor's average value across the given argument distributions. |
Remarks
The formula for the result is log(sum_(a) p(a) factor(difference,a,b))
.
Exceptions
Type | Condition |
---|---|
ImproperMessageException |
|
LogAverageFactor(Double, TruncatedGaussian, Double)
Evidence message for EP.
Declaration
public static double LogAverageFactor(double sum, TruncatedGaussian a, double b)
Parameters
Type | Name | Description |
---|---|---|
Double | sum | Constant value for |
TruncatedGaussian | a | Incoming message from |
Double | b | Constant value for |
Returns
Type | Description |
---|---|
Double | Logarithm of the factor's average value across the given argument distributions. |
Remarks
The formula for the result is log(sum_(difference) p(difference) factor(difference,a,b))
.
Exceptions
Type | Condition |
---|---|
ImproperMessageException |
|
LogAverageFactor(Double, Double, TruncatedGaussian)
Evidence message for EP.
Declaration
public static double LogAverageFactor(double sum, double a, TruncatedGaussian b)
Parameters
Type | Name | Description |
---|---|---|
Double | sum | Constant value for |
Double | a | Constant value for |
TruncatedGaussian | b | Incoming message from |
Returns
Type | Description |
---|---|
Double | Logarithm of the factor's average value across the given argument distributions. |
Remarks
The formula for the result is log(sum_(b) p(b) factor(difference,a,b))
.
Exceptions
Type | Condition |
---|---|
ImproperMessageException |
|
SumAverageConditional(Gaussian, TruncatedGaussian)
EP message to a
.
Declaration
public static Gaussian SumAverageConditional(Gaussian a, TruncatedGaussian b)
Parameters
Type | Name | Description |
---|---|---|
Gaussian | a | Incoming message from |
TruncatedGaussian | b | Incoming message from |
Returns
Type | Description |
---|---|
Gaussian | The outgoing EP message to the |
Remarks
The outgoing message is a distribution matching the moments of a
as the random arguments are varied. The formula is proj[p(a) sum_(difference,b) p(difference,b) factor(difference,a,b)]/p(a)
.
Exceptions
Type | Condition |
---|---|
ImproperMessageException |
|
ImproperMessageException |
|
SumAverageConditional(TruncatedGaussian, Gaussian)
EP message to a
.
Declaration
public static Gaussian SumAverageConditional(TruncatedGaussian a, Gaussian b)
Parameters
Type | Name | Description |
---|---|---|
TruncatedGaussian | a | Incoming message from |
Gaussian | b | Incoming message from |
Returns
Type | Description |
---|---|
Gaussian | The outgoing EP message to the |
Remarks
The outgoing message is a distribution matching the moments of a
as the random arguments are varied. The formula is proj[p(a) sum_(difference,b) p(difference,b) factor(difference,a,b)]/p(a)
.
Exceptions
Type | Condition |
---|---|
ImproperMessageException |
|
ImproperMessageException |
|
SumAverageConditional(TruncatedGaussian, Double)
EP message to a
.
Declaration
public static TruncatedGaussian SumAverageConditional(TruncatedGaussian a, double b)
Parameters
Type | Name | Description |
---|---|---|
TruncatedGaussian | a | Incoming message from |
Double | b | Constant value for |
Returns
Type | Description |
---|---|
TruncatedGaussian | The outgoing EP message to the |
Remarks
The outgoing message is a distribution matching the moments of a
as the random arguments are varied. The formula is proj[p(a) sum_(difference) p(difference) factor(difference,a,b)]/p(a)
.
Exceptions
Type | Condition |
---|---|
ImproperMessageException |
|
SumAverageConditional(Double, TruncatedGaussian)
EP message to a
.
Declaration
public static TruncatedGaussian SumAverageConditional(double a, TruncatedGaussian b)
Parameters
Type | Name | Description |
---|---|---|
Double | a | Constant value for |
TruncatedGaussian | b | Incoming message from |
Returns
Type | Description |
---|---|
TruncatedGaussian | The outgoing EP message to the |
Remarks
The outgoing message is a distribution matching the moments of a
as the random arguments are varied. The formula is proj[p(a) sum_(b) p(b) factor(difference,a,b)]/p(a)
.
Exceptions
Type | Condition |
---|---|
ImproperMessageException |
|