Search Results for

    Show / Hide Table of Contents

    Class PlusGammaVmpOp

    Provides outgoing messages for Plus(Double, Double), given random arguments to the function.

    Inheritance
    Object
    PlusGammaVmpOp
    Inherited Members
    Object.Equals(Object)
    Object.Equals(Object, Object)
    Object.GetHashCode()
    Object.GetType()
    Object.MemberwiseClone()
    Object.ReferenceEquals(Object, Object)
    Object.ToString()
    Namespace: Microsoft.ML.Probabilistic.Factors
    Assembly: Microsoft.ML.Probabilistic.dll
    Syntax
    [FactorMethod(typeof(Factor), "Plus", new Type[]{typeof(double), typeof(double)}, Default = true)]
    [Quality(QualityBand.Experimental)]
    public static class PlusGammaVmpOp

    Methods

    AAverageLogarithm(Gamma, Gamma, Gamma)

    VMP message to A.

    Declaration
    public static Gamma AAverageLogarithm(Gamma sum, Gamma a, Gamma b)
    Parameters
    Type Name Description
    Gamma sum

    Incoming message from Sum. Must be a proper distribution. If uniform, the result will be uniform.

    Gamma a

    Incoming message from A. Must be a proper distribution. If uniform, the result will be uniform.

    Gamma b

    Incoming message from B. Must be a proper distribution. If uniform, the result will be uniform.

    Returns
    Type Description
    Gamma

    The outgoing VMP message to the A argument.

    Remarks

    The outgoing message is the exponential of the average log-factor value, where the average is over all arguments except A. Because the factor is deterministic, Sum is integrated out before taking the logarithm. The formula is exp(sum_(B) p(B) log(sum_Sum p(Sum) factor(Sum,A,B))).

    Exceptions
    Type Condition
    ImproperMessageException

    sum is not a proper distribution.

    ImproperMessageException

    a is not a proper distribution.

    ImproperMessageException

    b is not a proper distribution.

    AAverageLogarithm(GammaPower, GammaPower, GammaPower, GammaPower, GammaPower)

    Declaration
    public static GammaPower AAverageLogarithm(GammaPower sum, GammaPower a, GammaPower b, GammaPower to_a, GammaPower to_b)
    Parameters
    Type Name Description
    GammaPower sum
    GammaPower a
    GammaPower b
    GammaPower to_a
    GammaPower to_b
    Returns
    Type Description
    GammaPower

    BAverageLogarithm(Gamma, Gamma, Gamma)

    VMP message to B.

    Declaration
    public static Gamma BAverageLogarithm(Gamma sum, Gamma a, Gamma b)
    Parameters
    Type Name Description
    Gamma sum

    Incoming message from Sum. Must be a proper distribution. If uniform, the result will be uniform.

    Gamma a

    Incoming message from A. Must be a proper distribution. If uniform, the result will be uniform.

    Gamma b

    Incoming message from B. Must be a proper distribution. If uniform, the result will be uniform.

    Returns
    Type Description
    Gamma

    The outgoing VMP message to the B argument.

    Remarks

    The outgoing message is the exponential of the average log-factor value, where the average is over all arguments except B. Because the factor is deterministic, Sum is integrated out before taking the logarithm. The formula is exp(sum_(A) p(A) log(sum_Sum p(Sum) factor(Sum,A,B))).

    Exceptions
    Type Condition
    ImproperMessageException

    sum is not a proper distribution.

    ImproperMessageException

    a is not a proper distribution.

    ImproperMessageException

    b is not a proper distribution.

    BAverageLogarithm(GammaPower, GammaPower, GammaPower, GammaPower, GammaPower)

    Declaration
    public static GammaPower BAverageLogarithm(GammaPower sum, GammaPower a, GammaPower b, GammaPower to_a, GammaPower to_b)
    Parameters
    Type Name Description
    GammaPower sum
    GammaPower a
    GammaPower b
    GammaPower to_a
    GammaPower to_b
    Returns
    Type Description
    GammaPower

    InvGammaFromMeanAndMeanInverse(Double, Double)

    Declaration
    public static GammaPower InvGammaFromMeanAndMeanInverse(double mean, double meanInverse)
    Parameters
    Type Name Description
    Double mean
    Double meanInverse
    Returns
    Type Description
    GammaPower

    InvGammaFromShapeAndMeanInverse(Double, Double)

    Declaration
    public static GammaPower InvGammaFromShapeAndMeanInverse(double shape, double meanInverse)
    Parameters
    Type Name Description
    Double shape
    Double meanInverse
    Returns
    Type Description
    GammaPower

    MeanInverseOfSum(GammaPower, GammaPower)

    Declaration
    public static double MeanInverseOfSum(GammaPower a, GammaPower b)
    Parameters
    Type Name Description
    GammaPower a
    GammaPower b
    Returns
    Type Description
    Double

    SumAverageLogarithm(Gamma, Gamma)

    VMP message to Sum.

    Declaration
    public static Gamma SumAverageLogarithm(Gamma a, Gamma b)
    Parameters
    Type Name Description
    Gamma a

    Incoming message from A. Must be a proper distribution. If uniform, the result will be uniform.

    Gamma b

    Incoming message from B. Must be a proper distribution. If uniform, the result will be uniform.

    Returns
    Type Description
    Gamma

    The outgoing VMP message to the Sum argument.

    Remarks

    The outgoing message is a distribution matching the moments of Sum as the random arguments are varied. The formula is proj[sum_(A,B) p(A,B) factor(Sum,A,B)].

    Exceptions
    Type Condition
    ImproperMessageException

    a is not a proper distribution.

    ImproperMessageException

    b is not a proper distribution.

    SumAverageLogarithm(GammaPower, GammaPower, GammaPower)

    VMP message to Sum.

    Declaration
    public static GammaPower SumAverageLogarithm(GammaPower a, GammaPower b, GammaPower result)
    Parameters
    Type Name Description
    GammaPower a

    Incoming message from A. Must be a proper distribution. If uniform, the result will be uniform.

    GammaPower b

    Incoming message from B. Must be a proper distribution. If uniform, the result will be uniform.

    GammaPower result

    Modified to contain the outgoing message.

    Returns
    Type Description
    GammaPower

    result

    Remarks

    The outgoing message is a distribution matching the moments of Sum as the random arguments are varied. The formula is proj[sum_(A,B) p(A,B) factor(Sum,A,B)].

    Exceptions
    Type Condition
    ImproperMessageException

    a is not a proper distribution.

    ImproperMessageException

    b is not a proper distribution.

    In This Article
    Back to top Copyright © .NET Foundation. All rights reserved.