Search Results for

    Show / Hide Table of Contents

    Class PlusGammaOp

    Provides outgoing messages for Plus(Double, Double), given random arguments to the function.

    Inheritance
    Object
    PlusGammaOp
    Inherited Members
    Object.Equals(Object)
    Object.Equals(Object, Object)
    Object.GetHashCode()
    Object.GetType()
    Object.MemberwiseClone()
    Object.ReferenceEquals(Object, Object)
    Object.ToString()
    Namespace: Microsoft.ML.Probabilistic.Factors
    Assembly: Microsoft.ML.Probabilistic.dll
    Syntax
    [FactorMethod(typeof(Factor), "Plus", new Type[]{typeof(double), typeof(double)}, Default = true)]
    [Quality(QualityBand.Experimental)]
    public static class PlusGammaOp

    Methods

    AAverageConditional(GammaPower, GammaPower, GammaPower, GammaPower, GammaPower)

    Declaration
    public static GammaPower AAverageConditional(GammaPower sum, GammaPower a, GammaPower b, GammaPower to_a, GammaPower to_b)
    Parameters
    Type Name Description
    GammaPower sum
    GammaPower a
    GammaPower b
    GammaPower to_a
    GammaPower to_b
    Returns
    Type Description
    GammaPower

    AAverageConditional(GammaPower, Double)

    EP message to A.

    Declaration
    public static GammaPower AAverageConditional(GammaPower sum, double b)
    Parameters
    Type Name Description
    GammaPower sum

    Incoming message from Sum. Must be a proper distribution. If uniform, the result will be uniform.

    Double b

    Constant value for B.

    Returns
    Type Description
    GammaPower

    The outgoing EP message to the A argument.

    Remarks

    The outgoing message is a distribution matching the moments of A as the random arguments are varied. The formula is proj[p(A) sum_(Sum) p(Sum) factor(Sum,A,B)]/p(A).

    Exceptions
    Type Condition
    ImproperMessageException

    sum is not a proper distribution.

    AAverageConditional2(GammaPower, GammaPower, GammaPower, GammaPower)

    Declaration
    public static GammaPower AAverageConditional2(GammaPower sum, GammaPower a, GammaPower b, GammaPower result)
    Parameters
    Type Name Description
    GammaPower sum
    GammaPower a
    GammaPower b
    GammaPower result
    Returns
    Type Description
    GammaPower

    BAverageConditional(GammaPower, GammaPower, GammaPower, GammaPower, GammaPower)

    Declaration
    public static GammaPower BAverageConditional(GammaPower sum, GammaPower a, GammaPower b, GammaPower to_a, GammaPower to_b)
    Parameters
    Type Name Description
    GammaPower sum
    GammaPower a
    GammaPower b
    GammaPower to_a
    GammaPower to_b
    Returns
    Type Description
    GammaPower

    BAverageConditional(GammaPower, Double)

    EP message to B.

    Declaration
    public static GammaPower BAverageConditional(GammaPower sum, double a)
    Parameters
    Type Name Description
    GammaPower sum

    Incoming message from Sum. Must be a proper distribution. If uniform, the result will be uniform.

    Double a

    Constant value for A.

    Returns
    Type Description
    GammaPower

    The outgoing EP message to the B argument.

    Remarks

    The outgoing message is a distribution matching the moments of B as the random arguments are varied. The formula is proj[p(B) sum_(Sum) p(Sum) factor(Sum,A,B)]/p(B).

    Exceptions
    Type Condition
    ImproperMessageException

    sum is not a proper distribution.

    BAverageConditional2(GammaPower, GammaPower, GammaPower, GammaPower)

    Declaration
    public static GammaPower BAverageConditional2(GammaPower sum, GammaPower a, GammaPower b, GammaPower result)
    Parameters
    Type Name Description
    GammaPower sum
    GammaPower a
    GammaPower b
    GammaPower result
    Returns
    Type Description
    GammaPower

    GammaPowerFromDerivLogZ(GammaPower, Double, Double)

    Declaration
    public static GammaPower GammaPowerFromDerivLogZ(GammaPower a, double dlogZ, double ddlogZ)
    Parameters
    Type Name Description
    GammaPower a
    Double dlogZ
    Double ddlogZ
    Returns
    Type Description
    GammaPower

    GetDerivLogZ(GammaPower, GammaPower, Double, Double, Double, Double, out Double, out Double)

    Gets the derivatives of the function that converts gamma parameters of toSum into the integral with sum.

    Declaration
    public static void GetDerivLogZ(GammaPower sum, GammaPower toSum, double ds, double dds, double dr, double ddr, out double dlogZ, out double ddlogZ)
    Parameters
    Type Name Description
    GammaPower sum
    GammaPower toSum
    Double ds
    Double dds
    Double dr
    Double ddr
    Double dlogZ
    Double ddlogZ

    GetGammaDerivs(Double, Double, Double, Double, Double, Double, out Double, out Double, out Double, out Double)

    Gets the derivatives of the function that converts moments into gamma parameters.

    Declaration
    public static void GetGammaDerivs(double mean, double dmean, double ddmean, double variance, double dvariance, double ddvariance, out double ds, out double dds, out double dr, out double ddr)
    Parameters
    Type Name Description
    Double mean
    Double dmean
    Double ddmean
    Double variance
    Double dvariance
    Double ddvariance
    Double ds
    Double dds
    Double dr
    Double ddr

    GetGammaMomentDerivs(GammaPower, out Double, out Double, out Double, out Double, out Double, out Double)

    Gets first and second derivatives of the moments with respect to the rate parameter of the distribution.

    Declaration
    public static void GetGammaMomentDerivs(GammaPower gammaPower, out double mean, out double dmean, out double ddmean, out double variance, out double dvariance, out double ddvariance)
    Parameters
    Type Name Description
    GammaPower gammaPower
    Double mean
    Double dmean
    Double ddmean
    Double variance
    Double dvariance
    Double ddvariance

    GetInverseGammaDerivs(Double, Double, Double, Double, Double, Double, out Double, out Double, out Double, out Double)

    Gets the derivatives of the function that converts moments into gamma parameters.

    Declaration
    public static void GetInverseGammaDerivs(double mean, double dmean, double ddmean, double variance, double dvariance, double ddvariance, out double ds, out double dds, out double dr, out double ddr)
    Parameters
    Type Name Description
    Double mean
    Double dmean
    Double ddmean
    Double variance
    Double dvariance
    Double ddvariance
    Double ds
    Double dds
    Double dr
    Double ddr

    GetInverseGammaMomentDerivs(GammaPower, out Double, out Double, out Double, out Double, out Double, out Double)

    Gets first and second derivatives of the moments with respect to the rate parameter of the distribution.

    Declaration
    public static void GetInverseGammaMomentDerivs(GammaPower gammaPower, out double mean, out double dmean, out double ddmean, out double variance, out double dvariance, out double ddvariance)
    Parameters
    Type Name Description
    GammaPower gammaPower
    Double mean
    Double dmean
    Double ddmean
    Double variance
    Double dvariance
    Double ddvariance

    GetPosteriorMeanAndVariance(Gamma, Double, Double, out Double, out Double)

    Declaration
    public static void GetPosteriorMeanAndVariance(Gamma prior, double dlogZ, double ddlogZ, out double mean, out double variance)
    Parameters
    Type Name Description
    Gamma prior
    Double dlogZ
    Double ddlogZ
    Double mean
    Double variance

    LogAverageFactor(GammaPower, GammaPower, GammaPower)

    Declaration
    public static double LogAverageFactor(GammaPower sum, GammaPower a, GammaPower b)
    Parameters
    Type Name Description
    GammaPower sum
    GammaPower a
    GammaPower b
    Returns
    Type Description
    Double

    LogEvidenceRatio(GammaPower, GammaPower, GammaPower)

    Evidence message for EP.

    Declaration
    public static double LogEvidenceRatio(GammaPower sum, GammaPower a, GammaPower b)
    Parameters
    Type Name Description
    GammaPower sum

    Incoming message from Sum. Must be a proper distribution. If uniform, the result will be uniform.

    GammaPower a

    Incoming message from A. Must be a proper distribution. If uniform, the result will be uniform.

    GammaPower b

    Incoming message from B. Must be a proper distribution. If uniform, the result will be uniform.

    Returns
    Type Description
    Double

    Logarithm of the factor's contribution the EP model evidence.

    Remarks

    The formula for the result is log(sum_(Sum,A,B) p(Sum,A,B) factor(Sum,A,B) / sum_Sum p(Sum) messageTo(Sum)). Adding up these values across all factors and variables gives the log-evidence estimate for EP.

    Exceptions
    Type Condition
    ImproperMessageException

    sum is not a proper distribution.

    ImproperMessageException

    a is not a proper distribution.

    ImproperMessageException

    b is not a proper distribution.

    SumAverageConditional(GammaPower, GammaPower, GammaPower)

    Declaration
    public static GammaPower SumAverageConditional(GammaPower a, GammaPower b, GammaPower result)
    Parameters
    Type Name Description
    GammaPower a
    GammaPower b
    GammaPower result
    Returns
    Type Description
    GammaPower

    SumAverageConditional(GammaPower, Double)

    EP message to Sum.

    Declaration
    public static GammaPower SumAverageConditional(GammaPower a, double b)
    Parameters
    Type Name Description
    GammaPower a

    Incoming message from A. Must be a proper distribution. If uniform, the result will be uniform.

    Double b

    Constant value for B.

    Returns
    Type Description
    GammaPower

    The outgoing EP message to the Sum argument.

    Remarks

    The outgoing message is a distribution matching the moments of Sum as the random arguments are varied. The formula is proj[p(Sum) sum_(A) p(A) factor(Sum,A,B)]/p(Sum).

    Exceptions
    Type Condition
    ImproperMessageException

    a is not a proper distribution.

    SumAverageConditional(Double, GammaPower)

    EP message to Sum.

    Declaration
    public static GammaPower SumAverageConditional(double a, GammaPower b)
    Parameters
    Type Name Description
    Double a

    Constant value for A.

    GammaPower b

    Incoming message from B. Must be a proper distribution. If uniform, the result will be uniform.

    Returns
    Type Description
    GammaPower

    The outgoing EP message to the Sum argument.

    Remarks

    The outgoing message is a distribution matching the moments of Sum as the random arguments are varied. The formula is proj[p(Sum) sum_(B) p(B) factor(Sum,A,B)]/p(Sum).

    Exceptions
    Type Condition
    ImproperMessageException

    b is not a proper distribution.

    In This Article
    Back to top Copyright © .NET Foundation. All rights reserved.