Class MaxGaussianOp
Provides outgoing messages for Max(Double, Double), given random arguments to the function.
Inherited Members
Namespace: Microsoft.ML.Probabilistic.Factors
Assembly: Microsoft.ML.Probabilistic.dll
Syntax
[FactorMethod(new string[]{"max", "a", "b"}, typeof(Math), "Max", new Type[]{typeof(double), typeof(double)})]
[Quality(QualityBand.Stable)]
public static class MaxGaussianOp
Fields
ForceProper
Static flag to force a proper distribution
Declaration
public static bool ForceProper
Field Value
| Type | Description |
|---|---|
| Boolean |
Methods
AAverageConditional(Gaussian, Gaussian, Gaussian)
EP message to val1.
Declaration
public static Gaussian AAverageConditional(Gaussian max, Gaussian a, Gaussian b)
Parameters
| Type | Name | Description |
|---|---|---|
| Gaussian | max | Incoming message from |
| Gaussian | a | Incoming message from |
| Gaussian | b | Incoming message from |
Returns
| Type | Description |
|---|---|
| Gaussian | The outgoing EP message to the |
Remarks
The outgoing message is a distribution matching the moments of val1 as the random arguments are varied. The formula is proj[p(val1) sum_(max,val2) p(max,val2) factor(max,val1,val2)]/p(val1).
Exceptions
| Type | Condition |
|---|---|
| ImproperMessageException |
|
| ImproperMessageException |
|
| ImproperMessageException |
|
AAverageConditional(Gaussian, Gaussian, Double)
EP message to val1.
Declaration
public static Gaussian AAverageConditional(Gaussian max, Gaussian a, double b)
Parameters
| Type | Name | Description |
|---|---|---|
| Gaussian | max | Incoming message from |
| Gaussian | a | Incoming message from |
| Double | b | Constant value for |
Returns
| Type | Description |
|---|---|
| Gaussian | The outgoing EP message to the |
Remarks
The outgoing message is a distribution matching the moments of val1 as the random arguments are varied. The formula is proj[p(val1) sum_(max) p(max) factor(max,val1,val2)]/p(val1).
Exceptions
| Type | Condition |
|---|---|
| ImproperMessageException |
|
| ImproperMessageException |
|
AAverageConditional(Double, Gaussian, Gaussian)
EP message to val1.
Declaration
public static Gaussian AAverageConditional(double max, Gaussian a, Gaussian b)
Parameters
| Type | Name | Description |
|---|---|---|
| Double | max | Constant value for |
| Gaussian | a | Incoming message from |
| Gaussian | b | Incoming message from |
Returns
| Type | Description |
|---|---|
| Gaussian | The outgoing EP message to the |
Remarks
The outgoing message is a distribution matching the moments of val1 as the random arguments are varied. The formula is proj[p(val1) sum_(val2) p(val2) factor(max,val1,val2)]/p(val1).
Exceptions
| Type | Condition |
|---|---|
| ImproperMessageException |
|
| ImproperMessageException |
|
AAverageConditional(Double, Gaussian, Double)
EP message to val1.
Declaration
public static Gaussian AAverageConditional(double max, Gaussian a, double b)
Parameters
| Type | Name | Description |
|---|---|---|
| Double | max | Constant value for |
| Gaussian | a | Incoming message from |
| Double | b | Constant value for |
Returns
| Type | Description |
|---|---|
| Gaussian | The outgoing EP message to the |
Remarks
The outgoing message is the factor viewed as a function of val1 conditioned on the given values.
Exceptions
| Type | Condition |
|---|---|
| ImproperMessageException |
|
AverageLogFactor(Double, Double, Double)
Evidence message for VMP.
Declaration
public static double AverageLogFactor(double max, double a, double b)
Parameters
| Type | Name | Description |
|---|---|---|
| Double | max | Constant value for |
| Double | a | Constant value for |
| Double | b | Constant value for |
Returns
| Type | Description |
|---|---|
| Double | Zero. |
Remarks
The formula for the result is log(factor(max,val1,val2)). Adding up these values across all factors and variables gives the log-evidence estimate for VMP.
BAverageConditional(Gaussian, Gaussian, Gaussian)
EP message to val2.
Declaration
public static Gaussian BAverageConditional(Gaussian max, Gaussian a, Gaussian b)
Parameters
| Type | Name | Description |
|---|---|---|
| Gaussian | max | Incoming message from |
| Gaussian | a | Incoming message from |
| Gaussian | b | Incoming message from |
Returns
| Type | Description |
|---|---|
| Gaussian | The outgoing EP message to the |
Remarks
The outgoing message is a distribution matching the moments of val2 as the random arguments are varied. The formula is proj[p(val2) sum_(max,val1) p(max,val1) factor(max,val1,val2)]/p(val2).
Exceptions
| Type | Condition |
|---|---|
| ImproperMessageException |
|
| ImproperMessageException |
|
| ImproperMessageException |
|
BAverageConditional(Gaussian, Double, Gaussian)
EP message to val2.
Declaration
public static Gaussian BAverageConditional(Gaussian max, double a, Gaussian b)
Parameters
| Type | Name | Description |
|---|---|---|
| Gaussian | max | Incoming message from |
| Double | a | Constant value for |
| Gaussian | b | Incoming message from |
Returns
| Type | Description |
|---|---|
| Gaussian | The outgoing EP message to the |
Remarks
The outgoing message is a distribution matching the moments of val2 as the random arguments are varied. The formula is proj[p(val2) sum_(max) p(max) factor(max,val1,val2)]/p(val2).
Exceptions
| Type | Condition |
|---|---|
| ImproperMessageException |
|
| ImproperMessageException |
|
BAverageConditional(Double, Gaussian, Gaussian)
EP message to val2.
Declaration
public static Gaussian BAverageConditional(double max, Gaussian a, Gaussian b)
Parameters
| Type | Name | Description |
|---|---|---|
| Double | max | Constant value for |
| Gaussian | a | Incoming message from |
| Gaussian | b | Incoming message from |
Returns
| Type | Description |
|---|---|
| Gaussian | The outgoing EP message to the |
Remarks
The outgoing message is a distribution matching the moments of val2 as the random arguments are varied. The formula is proj[p(val2) sum_(val1) p(val1) factor(max,val1,val2)]/p(val2).
Exceptions
| Type | Condition |
|---|---|
| ImproperMessageException |
|
| ImproperMessageException |
|
BAverageConditional(Double, Double, Gaussian)
EP message to val2.
Declaration
public static Gaussian BAverageConditional(double max, double a, Gaussian b)
Parameters
| Type | Name | Description |
|---|---|---|
| Double | max | Constant value for |
| Double | a | Constant value for |
| Gaussian | b | Incoming message from |
Returns
| Type | Description |
|---|---|
| Gaussian | The outgoing EP message to the |
Remarks
The outgoing message is the factor viewed as a function of val2 conditioned on the given values.
Exceptions
| Type | Condition |
|---|---|
| ImproperMessageException |
|
LogAverageFactor(Gaussian, Gaussian, Gaussian)
Evidence message for EP.
Declaration
public static double LogAverageFactor(Gaussian max, Gaussian a, Gaussian b)
Parameters
| Type | Name | Description |
|---|---|---|
| Gaussian | max | Incoming message from |
| Gaussian | a | Incoming message from |
| Gaussian | b | Incoming message from |
Returns
| Type | Description |
|---|---|
| Double | Logarithm of the factor's average value across the given argument distributions. |
Remarks
The formula for the result is log(sum_(max,val1,val2) p(max,val1,val2) factor(max,val1,val2)).
Exceptions
| Type | Condition |
|---|---|
| ImproperMessageException |
|
| ImproperMessageException |
|
| ImproperMessageException |
|
LogAverageFactor(Gaussian, Gaussian, Double)
Evidence message for EP.
Declaration
public static double LogAverageFactor(Gaussian max, Gaussian a, double b)
Parameters
| Type | Name | Description |
|---|---|---|
| Gaussian | max | Incoming message from |
| Gaussian | a | Incoming message from |
| Double | b | Constant value for |
Returns
| Type | Description |
|---|---|
| Double | Logarithm of the factor's average value across the given argument distributions. |
Remarks
The formula for the result is log(sum_(max,val1) p(max,val1) factor(max,val1,val2)).
Exceptions
| Type | Condition |
|---|---|
| ImproperMessageException |
|
| ImproperMessageException |
|
LogAverageFactor(Gaussian, Double, Gaussian)
Evidence message for EP.
Declaration
public static double LogAverageFactor(Gaussian max, double a, Gaussian b)
Parameters
| Type | Name | Description |
|---|---|---|
| Gaussian | max | Incoming message from |
| Double | a | Constant value for |
| Gaussian | b | Incoming message from |
Returns
| Type | Description |
|---|---|
| Double | Logarithm of the factor's average value across the given argument distributions. |
Remarks
The formula for the result is log(sum_(max,val2) p(max,val2) factor(max,val1,val2)).
Exceptions
| Type | Condition |
|---|---|
| ImproperMessageException |
|
| ImproperMessageException |
|
LogAverageFactor(Double, Gaussian, Gaussian)
Evidence message for EP.
Declaration
public static double LogAverageFactor(double max, Gaussian a, Gaussian b)
Parameters
| Type | Name | Description |
|---|---|---|
| Double | max | Constant value for |
| Gaussian | a | Incoming message from |
| Gaussian | b | Incoming message from |
Returns
| Type | Description |
|---|---|
| Double | Logarithm of the factor's average value across the given argument distributions. |
Remarks
The formula for the result is log(sum_(val1,val2) p(val1,val2) factor(max,val1,val2)).
Exceptions
| Type | Condition |
|---|---|
| ImproperMessageException |
|
| ImproperMessageException |
|
LogAverageFactor(Double, Gaussian, Double)
Evidence message for EP.
Declaration
public static double LogAverageFactor(double max, Gaussian a, double b)
Parameters
| Type | Name | Description |
|---|---|---|
| Double | max | Constant value for |
| Gaussian | a | Incoming message from |
| Double | b | Constant value for |
Returns
| Type | Description |
|---|---|
| Double | Logarithm of the factor's average value across the given argument distributions. |
Remarks
The formula for the result is log(sum_(val1) p(val1) factor(max,val1,val2)).
Exceptions
| Type | Condition |
|---|---|
| ImproperMessageException |
|
LogAverageFactor(Double, Double, Gaussian)
Evidence message for EP.
Declaration
public static double LogAverageFactor(double max, double a, Gaussian b)
Parameters
| Type | Name | Description |
|---|---|---|
| Double | max | Constant value for |
| Double | a | Constant value for |
| Gaussian | b | Incoming message from |
Returns
| Type | Description |
|---|---|
| Double | Logarithm of the factor's average value across the given argument distributions. |
Remarks
The formula for the result is log(sum_(val2) p(val2) factor(max,val1,val2)).
Exceptions
| Type | Condition |
|---|---|
| ImproperMessageException |
|
LogAverageFactor(Double, Double, Double)
Evidence message for EP.
Declaration
public static double LogAverageFactor(double max, double a, double b)
Parameters
| Type | Name | Description |
|---|---|---|
| Double | max | Constant value for |
| Double | a | Constant value for |
| Double | b | Constant value for |
Returns
| Type | Description |
|---|---|
| Double | Logarithm of the factor's average value across the given argument distributions. |
Remarks
The formula for the result is log(factor(max,val1,val2)).
LogEvidenceRatio(Gaussian, Gaussian, Gaussian)
Evidence message for EP.
Declaration
public static double LogEvidenceRatio(Gaussian max, Gaussian a, Gaussian b)
Parameters
| Type | Name | Description |
|---|---|---|
| Gaussian | max | Incoming message from |
| Gaussian | a | Incoming message from |
| Gaussian | b | Incoming message from |
Returns
| Type | Description |
|---|---|
| Double | Logarithm of the factor's contribution the EP model evidence. |
Remarks
The formula for the result is log(sum_(max,val1,val2) p(max,val1,val2) factor(max,val1,val2) / sum_max p(max) messageTo(max)). Adding up these values across all factors and variables gives the log-evidence estimate for EP.
Exceptions
| Type | Condition |
|---|---|
| ImproperMessageException |
|
| ImproperMessageException |
|
| ImproperMessageException |
|
LogEvidenceRatio(Gaussian, Gaussian, Double)
Evidence message for EP.
Declaration
public static double LogEvidenceRatio(Gaussian max, Gaussian a, double b)
Parameters
| Type | Name | Description |
|---|---|---|
| Gaussian | max | Incoming message from |
| Gaussian | a | Incoming message from |
| Double | b | Constant value for |
Returns
| Type | Description |
|---|---|
| Double | Logarithm of the factor's contribution the EP model evidence. |
Remarks
The formula for the result is log(sum_(max,val1) p(max,val1) factor(max,val1,val2) / sum_max p(max) messageTo(max)). Adding up these values across all factors and variables gives the log-evidence estimate for EP.
Exceptions
| Type | Condition |
|---|---|
| ImproperMessageException |
|
| ImproperMessageException |
|
LogEvidenceRatio(Gaussian, Double, Gaussian)
Evidence message for EP.
Declaration
public static double LogEvidenceRatio(Gaussian max, double a, Gaussian b)
Parameters
| Type | Name | Description |
|---|---|---|
| Gaussian | max | Incoming message from |
| Double | a | Constant value for |
| Gaussian | b | Incoming message from |
Returns
| Type | Description |
|---|---|
| Double | Logarithm of the factor's contribution the EP model evidence. |
Remarks
The formula for the result is log(sum_(max,val2) p(max,val2) factor(max,val1,val2) / sum_max p(max) messageTo(max)). Adding up these values across all factors and variables gives the log-evidence estimate for EP.
Exceptions
| Type | Condition |
|---|---|
| ImproperMessageException |
|
| ImproperMessageException |
|
LogEvidenceRatio(Double, Gaussian, Gaussian)
Evidence message for EP.
Declaration
public static double LogEvidenceRatio(double max, Gaussian a, Gaussian b)
Parameters
| Type | Name | Description |
|---|---|---|
| Double | max | Constant value for |
| Gaussian | a | Incoming message from |
| Gaussian | b | Incoming message from |
Returns
| Type | Description |
|---|---|
| Double | Logarithm of the factor's contribution the EP model evidence. |
Remarks
The formula for the result is log(sum_(val1,val2) p(val1,val2) factor(max,val1,val2)). Adding up these values across all factors and variables gives the log-evidence estimate for EP.
Exceptions
| Type | Condition |
|---|---|
| ImproperMessageException |
|
| ImproperMessageException |
|
LogEvidenceRatio(Double, Gaussian, Double)
Evidence message for EP.
Declaration
public static double LogEvidenceRatio(double max, Gaussian a, double b)
Parameters
| Type | Name | Description |
|---|---|---|
| Double | max | Constant value for |
| Gaussian | a | Incoming message from |
| Double | b | Constant value for |
Returns
| Type | Description |
|---|---|
| Double | Logarithm of the factor's contribution the EP model evidence. |
Remarks
The formula for the result is log(sum_(val1) p(val1) factor(max,val1,val2)). Adding up these values across all factors and variables gives the log-evidence estimate for EP.
Exceptions
| Type | Condition |
|---|---|
| ImproperMessageException |
|
LogEvidenceRatio(Double, Double, Gaussian)
Evidence message for EP.
Declaration
public static double LogEvidenceRatio(double max, double a, Gaussian b)
Parameters
| Type | Name | Description |
|---|---|---|
| Double | max | Constant value for |
| Double | a | Constant value for |
| Gaussian | b | Incoming message from |
Returns
| Type | Description |
|---|---|
| Double | Logarithm of the factor's contribution the EP model evidence. |
Remarks
The formula for the result is log(sum_(val2) p(val2) factor(max,val1,val2)). Adding up these values across all factors and variables gives the log-evidence estimate for EP.
Exceptions
| Type | Condition |
|---|---|
| ImproperMessageException |
|
LogEvidenceRatio(Double, Double, Double)
Evidence message for EP.
Declaration
public static double LogEvidenceRatio(double max, double a, double b)
Parameters
| Type | Name | Description |
|---|---|---|
| Double | max | Constant value for |
| Double | a | Constant value for |
| Double | b | Constant value for |
Returns
| Type | Description |
|---|---|
| Double | Logarithm of the factor's contribution the EP model evidence. |
Remarks
The formula for the result is log(factor(max,val1,val2)). Adding up these values across all factors and variables gives the log-evidence estimate for EP.
MaxAverageConditional(Gaussian, Gaussian, Gaussian)
EP message to max.
Declaration
public static Gaussian MaxAverageConditional(Gaussian max, Gaussian a, Gaussian b)
Parameters
| Type | Name | Description |
|---|---|---|
| Gaussian | max | Incoming message from |
| Gaussian | a | Incoming message from |
| Gaussian | b | Incoming message from |
Returns
| Type | Description |
|---|---|
| Gaussian | The outgoing EP message to the |
Remarks
The outgoing message is a distribution matching the moments of max as the random arguments are varied. The formula is proj[p(max) sum_(val1,val2) p(val1,val2) factor(max,val1,val2)]/p(max).
Exceptions
| Type | Condition |
|---|---|
| ImproperMessageException |
|
| ImproperMessageException |
|
MaxAverageConditional(Gaussian, Gaussian, Double)
EP message to max.
Declaration
public static Gaussian MaxAverageConditional(Gaussian max, Gaussian a, double b)
Parameters
| Type | Name | Description |
|---|---|---|
| Gaussian | max | Incoming message from |
| Gaussian | a | Incoming message from |
| Double | b | Constant value for |
Returns
| Type | Description |
|---|---|
| Gaussian | The outgoing EP message to the |
Remarks
The outgoing message is a distribution matching the moments of max as the random arguments are varied. The formula is proj[p(max) sum_(val1) p(val1) factor(max,val1,val2)]/p(max).
Exceptions
| Type | Condition |
|---|---|
| ImproperMessageException |
|
MaxAverageConditional(Gaussian, Double, Gaussian)
EP message to max.
Declaration
public static Gaussian MaxAverageConditional(Gaussian max, double a, Gaussian b)
Parameters
| Type | Name | Description |
|---|---|---|
| Gaussian | max | Incoming message from |
| Double | a | Constant value for |
| Gaussian | b | Incoming message from |
Returns
| Type | Description |
|---|---|
| Gaussian | The outgoing EP message to the |
Remarks
The outgoing message is a distribution matching the moments of max as the random arguments are varied. The formula is proj[p(max) sum_(val2) p(val2) factor(max,val1,val2)]/p(max).
Exceptions
| Type | Condition |
|---|---|
| ImproperMessageException |
|
MaxAverageConditionalInit()
Declaration
public static Gaussian MaxAverageConditionalInit()
Returns
| Type | Description |
|---|---|
| Gaussian |
Remarks