Class MaxGaussianOp
Provides outgoing messages for Max(Double, Double), given random arguments to the function.
Inherited Members
Namespace: Microsoft.ML.Probabilistic.Factors
Assembly: Microsoft.ML.Probabilistic.dll
Syntax
[FactorMethod(new string[]{"max", "a", "b"}, typeof(Math), "Max", new Type[]{typeof(double), typeof(double)})]
[Quality(QualityBand.Stable)]
public static class MaxGaussianOp
Fields
ForceProper
Static flag to force a proper distribution
Declaration
public static bool ForceProper
Field Value
Type | Description |
---|---|
Boolean |
Methods
AAverageConditional(Gaussian, Gaussian, Gaussian)
EP message to val1
.
Declaration
public static Gaussian AAverageConditional(Gaussian max, Gaussian a, Gaussian b)
Parameters
Type | Name | Description |
---|---|---|
Gaussian | max | Incoming message from |
Gaussian | a | Incoming message from |
Gaussian | b | Incoming message from |
Returns
Type | Description |
---|---|
Gaussian | The outgoing EP message to the |
Remarks
The outgoing message is a distribution matching the moments of val1
as the random arguments are varied. The formula is proj[p(val1) sum_(max,val2) p(max,val2) factor(max,val1,val2)]/p(val1)
.
Exceptions
Type | Condition |
---|---|
ImproperMessageException |
|
ImproperMessageException |
|
ImproperMessageException |
|
AAverageConditional(Gaussian, Gaussian, Double)
EP message to val1
.
Declaration
public static Gaussian AAverageConditional(Gaussian max, Gaussian a, double b)
Parameters
Type | Name | Description |
---|---|---|
Gaussian | max | Incoming message from |
Gaussian | a | Incoming message from |
Double | b | Constant value for |
Returns
Type | Description |
---|---|
Gaussian | The outgoing EP message to the |
Remarks
The outgoing message is a distribution matching the moments of val1
as the random arguments are varied. The formula is proj[p(val1) sum_(max) p(max) factor(max,val1,val2)]/p(val1)
.
Exceptions
Type | Condition |
---|---|
ImproperMessageException |
|
ImproperMessageException |
|
AAverageConditional(Double, Gaussian, Gaussian)
EP message to val1
.
Declaration
public static Gaussian AAverageConditional(double max, Gaussian a, Gaussian b)
Parameters
Type | Name | Description |
---|---|---|
Double | max | Constant value for |
Gaussian | a | Incoming message from |
Gaussian | b | Incoming message from |
Returns
Type | Description |
---|---|
Gaussian | The outgoing EP message to the |
Remarks
The outgoing message is a distribution matching the moments of val1
as the random arguments are varied. The formula is proj[p(val1) sum_(val2) p(val2) factor(max,val1,val2)]/p(val1)
.
Exceptions
Type | Condition |
---|---|
ImproperMessageException |
|
ImproperMessageException |
|
AAverageConditional(Double, Gaussian, Double)
EP message to val1
.
Declaration
public static Gaussian AAverageConditional(double max, Gaussian a, double b)
Parameters
Type | Name | Description |
---|---|---|
Double | max | Constant value for |
Gaussian | a | Incoming message from |
Double | b | Constant value for |
Returns
Type | Description |
---|---|
Gaussian | The outgoing EP message to the |
Remarks
The outgoing message is the factor viewed as a function of val1
conditioned on the given values.
Exceptions
Type | Condition |
---|---|
ImproperMessageException |
|
AverageLogFactor(Double, Double, Double)
Evidence message for VMP.
Declaration
public static double AverageLogFactor(double max, double a, double b)
Parameters
Type | Name | Description |
---|---|---|
Double | max | Constant value for |
Double | a | Constant value for |
Double | b | Constant value for |
Returns
Type | Description |
---|---|
Double | Zero. |
Remarks
The formula for the result is log(factor(max,val1,val2))
. Adding up these values across all factors and variables gives the log-evidence estimate for VMP.
BAverageConditional(Gaussian, Gaussian, Gaussian)
EP message to val2
.
Declaration
public static Gaussian BAverageConditional(Gaussian max, Gaussian a, Gaussian b)
Parameters
Type | Name | Description |
---|---|---|
Gaussian | max | Incoming message from |
Gaussian | a | Incoming message from |
Gaussian | b | Incoming message from |
Returns
Type | Description |
---|---|
Gaussian | The outgoing EP message to the |
Remarks
The outgoing message is a distribution matching the moments of val2
as the random arguments are varied. The formula is proj[p(val2) sum_(max,val1) p(max,val1) factor(max,val1,val2)]/p(val2)
.
Exceptions
Type | Condition |
---|---|
ImproperMessageException |
|
ImproperMessageException |
|
ImproperMessageException |
|
BAverageConditional(Gaussian, Double, Gaussian)
EP message to val2
.
Declaration
public static Gaussian BAverageConditional(Gaussian max, double a, Gaussian b)
Parameters
Type | Name | Description |
---|---|---|
Gaussian | max | Incoming message from |
Double | a | Constant value for |
Gaussian | b | Incoming message from |
Returns
Type | Description |
---|---|
Gaussian | The outgoing EP message to the |
Remarks
The outgoing message is a distribution matching the moments of val2
as the random arguments are varied. The formula is proj[p(val2) sum_(max) p(max) factor(max,val1,val2)]/p(val2)
.
Exceptions
Type | Condition |
---|---|
ImproperMessageException |
|
ImproperMessageException |
|
BAverageConditional(Double, Gaussian, Gaussian)
EP message to val2
.
Declaration
public static Gaussian BAverageConditional(double max, Gaussian a, Gaussian b)
Parameters
Type | Name | Description |
---|---|---|
Double | max | Constant value for |
Gaussian | a | Incoming message from |
Gaussian | b | Incoming message from |
Returns
Type | Description |
---|---|
Gaussian | The outgoing EP message to the |
Remarks
The outgoing message is a distribution matching the moments of val2
as the random arguments are varied. The formula is proj[p(val2) sum_(val1) p(val1) factor(max,val1,val2)]/p(val2)
.
Exceptions
Type | Condition |
---|---|
ImproperMessageException |
|
ImproperMessageException |
|
BAverageConditional(Double, Double, Gaussian)
EP message to val2
.
Declaration
public static Gaussian BAverageConditional(double max, double a, Gaussian b)
Parameters
Type | Name | Description |
---|---|---|
Double | max | Constant value for |
Double | a | Constant value for |
Gaussian | b | Incoming message from |
Returns
Type | Description |
---|---|
Gaussian | The outgoing EP message to the |
Remarks
The outgoing message is the factor viewed as a function of val2
conditioned on the given values.
Exceptions
Type | Condition |
---|---|
ImproperMessageException |
|
LogAverageFactor(Gaussian, Gaussian, Gaussian)
Evidence message for EP.
Declaration
public static double LogAverageFactor(Gaussian max, Gaussian a, Gaussian b)
Parameters
Type | Name | Description |
---|---|---|
Gaussian | max | Incoming message from |
Gaussian | a | Incoming message from |
Gaussian | b | Incoming message from |
Returns
Type | Description |
---|---|
Double | Logarithm of the factor's average value across the given argument distributions. |
Remarks
The formula for the result is log(sum_(max,val1,val2) p(max,val1,val2) factor(max,val1,val2))
.
Exceptions
Type | Condition |
---|---|
ImproperMessageException |
|
ImproperMessageException |
|
ImproperMessageException |
|
LogAverageFactor(Gaussian, Gaussian, Double)
Evidence message for EP.
Declaration
public static double LogAverageFactor(Gaussian max, Gaussian a, double b)
Parameters
Type | Name | Description |
---|---|---|
Gaussian | max | Incoming message from |
Gaussian | a | Incoming message from |
Double | b | Constant value for |
Returns
Type | Description |
---|---|
Double | Logarithm of the factor's average value across the given argument distributions. |
Remarks
The formula for the result is log(sum_(max,val1) p(max,val1) factor(max,val1,val2))
.
Exceptions
Type | Condition |
---|---|
ImproperMessageException |
|
ImproperMessageException |
|
LogAverageFactor(Gaussian, Double, Gaussian)
Evidence message for EP.
Declaration
public static double LogAverageFactor(Gaussian max, double a, Gaussian b)
Parameters
Type | Name | Description |
---|---|---|
Gaussian | max | Incoming message from |
Double | a | Constant value for |
Gaussian | b | Incoming message from |
Returns
Type | Description |
---|---|
Double | Logarithm of the factor's average value across the given argument distributions. |
Remarks
The formula for the result is log(sum_(max,val2) p(max,val2) factor(max,val1,val2))
.
Exceptions
Type | Condition |
---|---|
ImproperMessageException |
|
ImproperMessageException |
|
LogAverageFactor(Double, Gaussian, Gaussian)
Evidence message for EP.
Declaration
public static double LogAverageFactor(double max, Gaussian a, Gaussian b)
Parameters
Type | Name | Description |
---|---|---|
Double | max | Constant value for |
Gaussian | a | Incoming message from |
Gaussian | b | Incoming message from |
Returns
Type | Description |
---|---|
Double | Logarithm of the factor's average value across the given argument distributions. |
Remarks
The formula for the result is log(sum_(val1,val2) p(val1,val2) factor(max,val1,val2))
.
Exceptions
Type | Condition |
---|---|
ImproperMessageException |
|
ImproperMessageException |
|
LogAverageFactor(Double, Gaussian, Double)
Evidence message for EP.
Declaration
public static double LogAverageFactor(double max, Gaussian a, double b)
Parameters
Type | Name | Description |
---|---|---|
Double | max | Constant value for |
Gaussian | a | Incoming message from |
Double | b | Constant value for |
Returns
Type | Description |
---|---|
Double | Logarithm of the factor's average value across the given argument distributions. |
Remarks
The formula for the result is log(sum_(val1) p(val1) factor(max,val1,val2))
.
Exceptions
Type | Condition |
---|---|
ImproperMessageException |
|
LogAverageFactor(Double, Double, Gaussian)
Evidence message for EP.
Declaration
public static double LogAverageFactor(double max, double a, Gaussian b)
Parameters
Type | Name | Description |
---|---|---|
Double | max | Constant value for |
Double | a | Constant value for |
Gaussian | b | Incoming message from |
Returns
Type | Description |
---|---|
Double | Logarithm of the factor's average value across the given argument distributions. |
Remarks
The formula for the result is log(sum_(val2) p(val2) factor(max,val1,val2))
.
Exceptions
Type | Condition |
---|---|
ImproperMessageException |
|
LogAverageFactor(Double, Double, Double)
Evidence message for EP.
Declaration
public static double LogAverageFactor(double max, double a, double b)
Parameters
Type | Name | Description |
---|---|---|
Double | max | Constant value for |
Double | a | Constant value for |
Double | b | Constant value for |
Returns
Type | Description |
---|---|
Double | Logarithm of the factor's average value across the given argument distributions. |
Remarks
The formula for the result is log(factor(max,val1,val2))
.
LogEvidenceRatio(Gaussian, Gaussian, Gaussian)
Evidence message for EP.
Declaration
public static double LogEvidenceRatio(Gaussian max, Gaussian a, Gaussian b)
Parameters
Type | Name | Description |
---|---|---|
Gaussian | max | Incoming message from |
Gaussian | a | Incoming message from |
Gaussian | b | Incoming message from |
Returns
Type | Description |
---|---|
Double | Logarithm of the factor's contribution the EP model evidence. |
Remarks
The formula for the result is log(sum_(max,val1,val2) p(max,val1,val2) factor(max,val1,val2) / sum_max p(max) messageTo(max))
. Adding up these values across all factors and variables gives the log-evidence estimate for EP.
Exceptions
Type | Condition |
---|---|
ImproperMessageException |
|
ImproperMessageException |
|
ImproperMessageException |
|
LogEvidenceRatio(Gaussian, Gaussian, Double)
Evidence message for EP.
Declaration
public static double LogEvidenceRatio(Gaussian max, Gaussian a, double b)
Parameters
Type | Name | Description |
---|---|---|
Gaussian | max | Incoming message from |
Gaussian | a | Incoming message from |
Double | b | Constant value for |
Returns
Type | Description |
---|---|
Double | Logarithm of the factor's contribution the EP model evidence. |
Remarks
The formula for the result is log(sum_(max,val1) p(max,val1) factor(max,val1,val2) / sum_max p(max) messageTo(max))
. Adding up these values across all factors and variables gives the log-evidence estimate for EP.
Exceptions
Type | Condition |
---|---|
ImproperMessageException |
|
ImproperMessageException |
|
LogEvidenceRatio(Gaussian, Double, Gaussian)
Evidence message for EP.
Declaration
public static double LogEvidenceRatio(Gaussian max, double a, Gaussian b)
Parameters
Type | Name | Description |
---|---|---|
Gaussian | max | Incoming message from |
Double | a | Constant value for |
Gaussian | b | Incoming message from |
Returns
Type | Description |
---|---|
Double | Logarithm of the factor's contribution the EP model evidence. |
Remarks
The formula for the result is log(sum_(max,val2) p(max,val2) factor(max,val1,val2) / sum_max p(max) messageTo(max))
. Adding up these values across all factors and variables gives the log-evidence estimate for EP.
Exceptions
Type | Condition |
---|---|
ImproperMessageException |
|
ImproperMessageException |
|
LogEvidenceRatio(Double, Gaussian, Gaussian)
Evidence message for EP.
Declaration
public static double LogEvidenceRatio(double max, Gaussian a, Gaussian b)
Parameters
Type | Name | Description |
---|---|---|
Double | max | Constant value for |
Gaussian | a | Incoming message from |
Gaussian | b | Incoming message from |
Returns
Type | Description |
---|---|
Double | Logarithm of the factor's contribution the EP model evidence. |
Remarks
The formula for the result is log(sum_(val1,val2) p(val1,val2) factor(max,val1,val2))
. Adding up these values across all factors and variables gives the log-evidence estimate for EP.
Exceptions
Type | Condition |
---|---|
ImproperMessageException |
|
ImproperMessageException |
|
LogEvidenceRatio(Double, Gaussian, Double)
Evidence message for EP.
Declaration
public static double LogEvidenceRatio(double max, Gaussian a, double b)
Parameters
Type | Name | Description |
---|---|---|
Double | max | Constant value for |
Gaussian | a | Incoming message from |
Double | b | Constant value for |
Returns
Type | Description |
---|---|
Double | Logarithm of the factor's contribution the EP model evidence. |
Remarks
The formula for the result is log(sum_(val1) p(val1) factor(max,val1,val2))
. Adding up these values across all factors and variables gives the log-evidence estimate for EP.
Exceptions
Type | Condition |
---|---|
ImproperMessageException |
|
LogEvidenceRatio(Double, Double, Gaussian)
Evidence message for EP.
Declaration
public static double LogEvidenceRatio(double max, double a, Gaussian b)
Parameters
Type | Name | Description |
---|---|---|
Double | max | Constant value for |
Double | a | Constant value for |
Gaussian | b | Incoming message from |
Returns
Type | Description |
---|---|
Double | Logarithm of the factor's contribution the EP model evidence. |
Remarks
The formula for the result is log(sum_(val2) p(val2) factor(max,val1,val2))
. Adding up these values across all factors and variables gives the log-evidence estimate for EP.
Exceptions
Type | Condition |
---|---|
ImproperMessageException |
|
LogEvidenceRatio(Double, Double, Double)
Evidence message for EP.
Declaration
public static double LogEvidenceRatio(double max, double a, double b)
Parameters
Type | Name | Description |
---|---|---|
Double | max | Constant value for |
Double | a | Constant value for |
Double | b | Constant value for |
Returns
Type | Description |
---|---|
Double | Logarithm of the factor's contribution the EP model evidence. |
Remarks
The formula for the result is log(factor(max,val1,val2))
. Adding up these values across all factors and variables gives the log-evidence estimate for EP.
MaxAverageConditional(Gaussian, Gaussian, Gaussian)
EP message to max
.
Declaration
public static Gaussian MaxAverageConditional(Gaussian max, Gaussian a, Gaussian b)
Parameters
Type | Name | Description |
---|---|---|
Gaussian | max | Incoming message from |
Gaussian | a | Incoming message from |
Gaussian | b | Incoming message from |
Returns
Type | Description |
---|---|
Gaussian | The outgoing EP message to the |
Remarks
The outgoing message is a distribution matching the moments of max
as the random arguments are varied. The formula is proj[p(max) sum_(val1,val2) p(val1,val2) factor(max,val1,val2)]/p(max)
.
Exceptions
Type | Condition |
---|---|
ImproperMessageException |
|
ImproperMessageException |
|
MaxAverageConditional(Gaussian, Gaussian, Double)
EP message to max
.
Declaration
public static Gaussian MaxAverageConditional(Gaussian max, Gaussian a, double b)
Parameters
Type | Name | Description |
---|---|---|
Gaussian | max | Incoming message from |
Gaussian | a | Incoming message from |
Double | b | Constant value for |
Returns
Type | Description |
---|---|
Gaussian | The outgoing EP message to the |
Remarks
The outgoing message is a distribution matching the moments of max
as the random arguments are varied. The formula is proj[p(max) sum_(val1) p(val1) factor(max,val1,val2)]/p(max)
.
Exceptions
Type | Condition |
---|---|
ImproperMessageException |
|
MaxAverageConditional(Gaussian, Double, Gaussian)
EP message to max
.
Declaration
public static Gaussian MaxAverageConditional(Gaussian max, double a, Gaussian b)
Parameters
Type | Name | Description |
---|---|---|
Gaussian | max | Incoming message from |
Double | a | Constant value for |
Gaussian | b | Incoming message from |
Returns
Type | Description |
---|---|
Gaussian | The outgoing EP message to the |
Remarks
The outgoing message is a distribution matching the moments of max
as the random arguments are varied. The formula is proj[p(max) sum_(val2) p(val2) factor(max,val1,val2)]/p(max)
.
Exceptions
Type | Condition |
---|---|
ImproperMessageException |
|
MaxAverageConditionalInit()
Declaration
public static Gaussian MaxAverageConditionalInit()
Returns
Type | Description |
---|---|
Gaussian |
Remarks