Search Results for

    Show / Hide Table of Contents

    Class MaxGaussianOp

    Provides outgoing messages for Max(Double, Double), given random arguments to the function.

    Inheritance
    Object
    MaxGaussianOp
    Inherited Members
    Object.Equals(Object)
    Object.Equals(Object, Object)
    Object.GetHashCode()
    Object.GetType()
    Object.MemberwiseClone()
    Object.ReferenceEquals(Object, Object)
    Object.ToString()
    Namespace: Microsoft.ML.Probabilistic.Factors
    Assembly: Microsoft.ML.Probabilistic.dll
    Syntax
    [FactorMethod(new string[]{"max", "a", "b"}, typeof(Math), "Max", new Type[]{typeof(double), typeof(double)})]
    [Quality(QualityBand.Stable)]
    public static class MaxGaussianOp

    Fields

    ForceProper

    Static flag to force a proper distribution

    Declaration
    public static bool ForceProper
    Field Value
    Type Description
    Boolean

    Methods

    AAverageConditional(Gaussian, Gaussian, Gaussian)

    EP message to val1.

    Declaration
    public static Gaussian AAverageConditional(Gaussian max, Gaussian a, Gaussian b)
    Parameters
    Type Name Description
    Gaussian max

    Incoming message from max. Must be a proper distribution. If uniform, the result will be uniform.

    Gaussian a

    Incoming message from val1. Must be a proper distribution. If uniform, the result will be uniform.

    Gaussian b

    Incoming message from val2. Must be a proper distribution. If uniform, the result will be uniform.

    Returns
    Type Description
    Gaussian

    The outgoing EP message to the val1 argument.

    Remarks

    The outgoing message is a distribution matching the moments of val1 as the random arguments are varied. The formula is proj[p(val1) sum_(max,val2) p(max,val2) factor(max,val1,val2)]/p(val1).

    Exceptions
    Type Condition
    ImproperMessageException

    max is not a proper distribution.

    ImproperMessageException

    a is not a proper distribution.

    ImproperMessageException

    b is not a proper distribution.

    AAverageConditional(Gaussian, Gaussian, Double)

    EP message to val1.

    Declaration
    public static Gaussian AAverageConditional(Gaussian max, Gaussian a, double b)
    Parameters
    Type Name Description
    Gaussian max

    Incoming message from max. Must be a proper distribution. If uniform, the result will be uniform.

    Gaussian a

    Incoming message from val1. Must be a proper distribution. If uniform, the result will be uniform.

    Double b

    Constant value for val2.

    Returns
    Type Description
    Gaussian

    The outgoing EP message to the val1 argument.

    Remarks

    The outgoing message is a distribution matching the moments of val1 as the random arguments are varied. The formula is proj[p(val1) sum_(max) p(max) factor(max,val1,val2)]/p(val1).

    Exceptions
    Type Condition
    ImproperMessageException

    max is not a proper distribution.

    ImproperMessageException

    a is not a proper distribution.

    AAverageConditional(Double, Gaussian, Gaussian)

    EP message to val1.

    Declaration
    public static Gaussian AAverageConditional(double max, Gaussian a, Gaussian b)
    Parameters
    Type Name Description
    Double max

    Constant value for max.

    Gaussian a

    Incoming message from val1. Must be a proper distribution. If uniform, the result will be uniform.

    Gaussian b

    Incoming message from val2. Must be a proper distribution. If uniform, the result will be uniform.

    Returns
    Type Description
    Gaussian

    The outgoing EP message to the val1 argument.

    Remarks

    The outgoing message is a distribution matching the moments of val1 as the random arguments are varied. The formula is proj[p(val1) sum_(val2) p(val2) factor(max,val1,val2)]/p(val1).

    Exceptions
    Type Condition
    ImproperMessageException

    a is not a proper distribution.

    ImproperMessageException

    b is not a proper distribution.

    AAverageConditional(Double, Gaussian, Double)

    EP message to val1.

    Declaration
    public static Gaussian AAverageConditional(double max, Gaussian a, double b)
    Parameters
    Type Name Description
    Double max

    Constant value for max.

    Gaussian a

    Incoming message from val1. Must be a proper distribution. If uniform, the result will be uniform.

    Double b

    Constant value for val2.

    Returns
    Type Description
    Gaussian

    The outgoing EP message to the val1 argument.

    Remarks

    The outgoing message is the factor viewed as a function of val1 conditioned on the given values.

    Exceptions
    Type Condition
    ImproperMessageException

    a is not a proper distribution.

    AverageLogFactor(Double, Double, Double)

    Evidence message for VMP.

    Declaration
    public static double AverageLogFactor(double max, double a, double b)
    Parameters
    Type Name Description
    Double max

    Constant value for max.

    Double a

    Constant value for val1.

    Double b

    Constant value for val2.

    Returns
    Type Description
    Double

    Zero.

    Remarks

    The formula for the result is log(factor(max,val1,val2)). Adding up these values across all factors and variables gives the log-evidence estimate for VMP.

    BAverageConditional(Gaussian, Gaussian, Gaussian)

    EP message to val2.

    Declaration
    public static Gaussian BAverageConditional(Gaussian max, Gaussian a, Gaussian b)
    Parameters
    Type Name Description
    Gaussian max

    Incoming message from max. Must be a proper distribution. If uniform, the result will be uniform.

    Gaussian a

    Incoming message from val1. Must be a proper distribution. If uniform, the result will be uniform.

    Gaussian b

    Incoming message from val2. Must be a proper distribution. If uniform, the result will be uniform.

    Returns
    Type Description
    Gaussian

    The outgoing EP message to the val2 argument.

    Remarks

    The outgoing message is a distribution matching the moments of val2 as the random arguments are varied. The formula is proj[p(val2) sum_(max,val1) p(max,val1) factor(max,val1,val2)]/p(val2).

    Exceptions
    Type Condition
    ImproperMessageException

    max is not a proper distribution.

    ImproperMessageException

    a is not a proper distribution.

    ImproperMessageException

    b is not a proper distribution.

    BAverageConditional(Gaussian, Double, Gaussian)

    EP message to val2.

    Declaration
    public static Gaussian BAverageConditional(Gaussian max, double a, Gaussian b)
    Parameters
    Type Name Description
    Gaussian max

    Incoming message from max. Must be a proper distribution. If uniform, the result will be uniform.

    Double a

    Constant value for val1.

    Gaussian b

    Incoming message from val2. Must be a proper distribution. If uniform, the result will be uniform.

    Returns
    Type Description
    Gaussian

    The outgoing EP message to the val2 argument.

    Remarks

    The outgoing message is a distribution matching the moments of val2 as the random arguments are varied. The formula is proj[p(val2) sum_(max) p(max) factor(max,val1,val2)]/p(val2).

    Exceptions
    Type Condition
    ImproperMessageException

    max is not a proper distribution.

    ImproperMessageException

    b is not a proper distribution.

    BAverageConditional(Double, Gaussian, Gaussian)

    EP message to val2.

    Declaration
    public static Gaussian BAverageConditional(double max, Gaussian a, Gaussian b)
    Parameters
    Type Name Description
    Double max

    Constant value for max.

    Gaussian a

    Incoming message from val1. Must be a proper distribution. If uniform, the result will be uniform.

    Gaussian b

    Incoming message from val2. Must be a proper distribution. If uniform, the result will be uniform.

    Returns
    Type Description
    Gaussian

    The outgoing EP message to the val2 argument.

    Remarks

    The outgoing message is a distribution matching the moments of val2 as the random arguments are varied. The formula is proj[p(val2) sum_(val1) p(val1) factor(max,val1,val2)]/p(val2).

    Exceptions
    Type Condition
    ImproperMessageException

    a is not a proper distribution.

    ImproperMessageException

    b is not a proper distribution.

    BAverageConditional(Double, Double, Gaussian)

    EP message to val2.

    Declaration
    public static Gaussian BAverageConditional(double max, double a, Gaussian b)
    Parameters
    Type Name Description
    Double max

    Constant value for max.

    Double a

    Constant value for val1.

    Gaussian b

    Incoming message from val2. Must be a proper distribution. If uniform, the result will be uniform.

    Returns
    Type Description
    Gaussian

    The outgoing EP message to the val2 argument.

    Remarks

    The outgoing message is the factor viewed as a function of val2 conditioned on the given values.

    Exceptions
    Type Condition
    ImproperMessageException

    b is not a proper distribution.

    LogAverageFactor(Gaussian, Gaussian, Gaussian)

    Evidence message for EP.

    Declaration
    public static double LogAverageFactor(Gaussian max, Gaussian a, Gaussian b)
    Parameters
    Type Name Description
    Gaussian max

    Incoming message from max. Must be a proper distribution. If uniform, the result will be uniform.

    Gaussian a

    Incoming message from val1. Must be a proper distribution. If uniform, the result will be uniform.

    Gaussian b

    Incoming message from val2. Must be a proper distribution. If uniform, the result will be uniform.

    Returns
    Type Description
    Double

    Logarithm of the factor's average value across the given argument distributions.

    Remarks

    The formula for the result is log(sum_(max,val1,val2) p(max,val1,val2) factor(max,val1,val2)).

    Exceptions
    Type Condition
    ImproperMessageException

    max is not a proper distribution.

    ImproperMessageException

    a is not a proper distribution.

    ImproperMessageException

    b is not a proper distribution.

    LogAverageFactor(Gaussian, Gaussian, Double)

    Evidence message for EP.

    Declaration
    public static double LogAverageFactor(Gaussian max, Gaussian a, double b)
    Parameters
    Type Name Description
    Gaussian max

    Incoming message from max. Must be a proper distribution. If uniform, the result will be uniform.

    Gaussian a

    Incoming message from val1. Must be a proper distribution. If uniform, the result will be uniform.

    Double b

    Constant value for val2.

    Returns
    Type Description
    Double

    Logarithm of the factor's average value across the given argument distributions.

    Remarks

    The formula for the result is log(sum_(max,val1) p(max,val1) factor(max,val1,val2)).

    Exceptions
    Type Condition
    ImproperMessageException

    max is not a proper distribution.

    ImproperMessageException

    a is not a proper distribution.

    LogAverageFactor(Gaussian, Double, Gaussian)

    Evidence message for EP.

    Declaration
    public static double LogAverageFactor(Gaussian max, double a, Gaussian b)
    Parameters
    Type Name Description
    Gaussian max

    Incoming message from max. Must be a proper distribution. If uniform, the result will be uniform.

    Double a

    Constant value for val1.

    Gaussian b

    Incoming message from val2. Must be a proper distribution. If uniform, the result will be uniform.

    Returns
    Type Description
    Double

    Logarithm of the factor's average value across the given argument distributions.

    Remarks

    The formula for the result is log(sum_(max,val2) p(max,val2) factor(max,val1,val2)).

    Exceptions
    Type Condition
    ImproperMessageException

    max is not a proper distribution.

    ImproperMessageException

    b is not a proper distribution.

    LogAverageFactor(Double, Gaussian, Gaussian)

    Evidence message for EP.

    Declaration
    public static double LogAverageFactor(double max, Gaussian a, Gaussian b)
    Parameters
    Type Name Description
    Double max

    Constant value for max.

    Gaussian a

    Incoming message from val1. Must be a proper distribution. If uniform, the result will be uniform.

    Gaussian b

    Incoming message from val2. Must be a proper distribution. If uniform, the result will be uniform.

    Returns
    Type Description
    Double

    Logarithm of the factor's average value across the given argument distributions.

    Remarks

    The formula for the result is log(sum_(val1,val2) p(val1,val2) factor(max,val1,val2)).

    Exceptions
    Type Condition
    ImproperMessageException

    a is not a proper distribution.

    ImproperMessageException

    b is not a proper distribution.

    LogAverageFactor(Double, Gaussian, Double)

    Evidence message for EP.

    Declaration
    public static double LogAverageFactor(double max, Gaussian a, double b)
    Parameters
    Type Name Description
    Double max

    Constant value for max.

    Gaussian a

    Incoming message from val1. Must be a proper distribution. If uniform, the result will be uniform.

    Double b

    Constant value for val2.

    Returns
    Type Description
    Double

    Logarithm of the factor's average value across the given argument distributions.

    Remarks

    The formula for the result is log(sum_(val1) p(val1) factor(max,val1,val2)).

    Exceptions
    Type Condition
    ImproperMessageException

    a is not a proper distribution.

    LogAverageFactor(Double, Double, Gaussian)

    Evidence message for EP.

    Declaration
    public static double LogAverageFactor(double max, double a, Gaussian b)
    Parameters
    Type Name Description
    Double max

    Constant value for max.

    Double a

    Constant value for val1.

    Gaussian b

    Incoming message from val2. Must be a proper distribution. If uniform, the result will be uniform.

    Returns
    Type Description
    Double

    Logarithm of the factor's average value across the given argument distributions.

    Remarks

    The formula for the result is log(sum_(val2) p(val2) factor(max,val1,val2)).

    Exceptions
    Type Condition
    ImproperMessageException

    b is not a proper distribution.

    LogAverageFactor(Double, Double, Double)

    Evidence message for EP.

    Declaration
    public static double LogAverageFactor(double max, double a, double b)
    Parameters
    Type Name Description
    Double max

    Constant value for max.

    Double a

    Constant value for val1.

    Double b

    Constant value for val2.

    Returns
    Type Description
    Double

    Logarithm of the factor's average value across the given argument distributions.

    Remarks

    The formula for the result is log(factor(max,val1,val2)).

    LogEvidenceRatio(Gaussian, Gaussian, Gaussian)

    Evidence message for EP.

    Declaration
    public static double LogEvidenceRatio(Gaussian max, Gaussian a, Gaussian b)
    Parameters
    Type Name Description
    Gaussian max

    Incoming message from max. Must be a proper distribution. If uniform, the result will be uniform.

    Gaussian a

    Incoming message from val1. Must be a proper distribution. If uniform, the result will be uniform.

    Gaussian b

    Incoming message from val2. Must be a proper distribution. If uniform, the result will be uniform.

    Returns
    Type Description
    Double

    Logarithm of the factor's contribution the EP model evidence.

    Remarks

    The formula for the result is log(sum_(max,val1,val2) p(max,val1,val2) factor(max,val1,val2) / sum_max p(max) messageTo(max)). Adding up these values across all factors and variables gives the log-evidence estimate for EP.

    Exceptions
    Type Condition
    ImproperMessageException

    max is not a proper distribution.

    ImproperMessageException

    a is not a proper distribution.

    ImproperMessageException

    b is not a proper distribution.

    LogEvidenceRatio(Gaussian, Gaussian, Double)

    Evidence message for EP.

    Declaration
    public static double LogEvidenceRatio(Gaussian max, Gaussian a, double b)
    Parameters
    Type Name Description
    Gaussian max

    Incoming message from max. Must be a proper distribution. If uniform, the result will be uniform.

    Gaussian a

    Incoming message from val1. Must be a proper distribution. If uniform, the result will be uniform.

    Double b

    Constant value for val2.

    Returns
    Type Description
    Double

    Logarithm of the factor's contribution the EP model evidence.

    Remarks

    The formula for the result is log(sum_(max,val1) p(max,val1) factor(max,val1,val2) / sum_max p(max) messageTo(max)). Adding up these values across all factors and variables gives the log-evidence estimate for EP.

    Exceptions
    Type Condition
    ImproperMessageException

    max is not a proper distribution.

    ImproperMessageException

    a is not a proper distribution.

    LogEvidenceRatio(Gaussian, Double, Gaussian)

    Evidence message for EP.

    Declaration
    public static double LogEvidenceRatio(Gaussian max, double a, Gaussian b)
    Parameters
    Type Name Description
    Gaussian max

    Incoming message from max. Must be a proper distribution. If uniform, the result will be uniform.

    Double a

    Constant value for val1.

    Gaussian b

    Incoming message from val2. Must be a proper distribution. If uniform, the result will be uniform.

    Returns
    Type Description
    Double

    Logarithm of the factor's contribution the EP model evidence.

    Remarks

    The formula for the result is log(sum_(max,val2) p(max,val2) factor(max,val1,val2) / sum_max p(max) messageTo(max)). Adding up these values across all factors and variables gives the log-evidence estimate for EP.

    Exceptions
    Type Condition
    ImproperMessageException

    max is not a proper distribution.

    ImproperMessageException

    b is not a proper distribution.

    LogEvidenceRatio(Double, Gaussian, Gaussian)

    Evidence message for EP.

    Declaration
    public static double LogEvidenceRatio(double max, Gaussian a, Gaussian b)
    Parameters
    Type Name Description
    Double max

    Constant value for max.

    Gaussian a

    Incoming message from val1. Must be a proper distribution. If uniform, the result will be uniform.

    Gaussian b

    Incoming message from val2. Must be a proper distribution. If uniform, the result will be uniform.

    Returns
    Type Description
    Double

    Logarithm of the factor's contribution the EP model evidence.

    Remarks

    The formula for the result is log(sum_(val1,val2) p(val1,val2) factor(max,val1,val2)). Adding up these values across all factors and variables gives the log-evidence estimate for EP.

    Exceptions
    Type Condition
    ImproperMessageException

    a is not a proper distribution.

    ImproperMessageException

    b is not a proper distribution.

    LogEvidenceRatio(Double, Gaussian, Double)

    Evidence message for EP.

    Declaration
    public static double LogEvidenceRatio(double max, Gaussian a, double b)
    Parameters
    Type Name Description
    Double max

    Constant value for max.

    Gaussian a

    Incoming message from val1. Must be a proper distribution. If uniform, the result will be uniform.

    Double b

    Constant value for val2.

    Returns
    Type Description
    Double

    Logarithm of the factor's contribution the EP model evidence.

    Remarks

    The formula for the result is log(sum_(val1) p(val1) factor(max,val1,val2)). Adding up these values across all factors and variables gives the log-evidence estimate for EP.

    Exceptions
    Type Condition
    ImproperMessageException

    a is not a proper distribution.

    LogEvidenceRatio(Double, Double, Gaussian)

    Evidence message for EP.

    Declaration
    public static double LogEvidenceRatio(double max, double a, Gaussian b)
    Parameters
    Type Name Description
    Double max

    Constant value for max.

    Double a

    Constant value for val1.

    Gaussian b

    Incoming message from val2. Must be a proper distribution. If uniform, the result will be uniform.

    Returns
    Type Description
    Double

    Logarithm of the factor's contribution the EP model evidence.

    Remarks

    The formula for the result is log(sum_(val2) p(val2) factor(max,val1,val2)). Adding up these values across all factors and variables gives the log-evidence estimate for EP.

    Exceptions
    Type Condition
    ImproperMessageException

    b is not a proper distribution.

    LogEvidenceRatio(Double, Double, Double)

    Evidence message for EP.

    Declaration
    public static double LogEvidenceRatio(double max, double a, double b)
    Parameters
    Type Name Description
    Double max

    Constant value for max.

    Double a

    Constant value for val1.

    Double b

    Constant value for val2.

    Returns
    Type Description
    Double

    Logarithm of the factor's contribution the EP model evidence.

    Remarks

    The formula for the result is log(factor(max,val1,val2)). Adding up these values across all factors and variables gives the log-evidence estimate for EP.

    MaxAverageConditional(Gaussian, Gaussian, Gaussian)

    EP message to max.

    Declaration
    public static Gaussian MaxAverageConditional(Gaussian max, Gaussian a, Gaussian b)
    Parameters
    Type Name Description
    Gaussian max

    Incoming message from max.

    Gaussian a

    Incoming message from val1. Must be a proper distribution. If uniform, the result will be uniform.

    Gaussian b

    Incoming message from val2. Must be a proper distribution. If uniform, the result will be uniform.

    Returns
    Type Description
    Gaussian

    The outgoing EP message to the max argument.

    Remarks

    The outgoing message is a distribution matching the moments of max as the random arguments are varied. The formula is proj[p(max) sum_(val1,val2) p(val1,val2) factor(max,val1,val2)]/p(max).

    Exceptions
    Type Condition
    ImproperMessageException

    a is not a proper distribution.

    ImproperMessageException

    b is not a proper distribution.

    MaxAverageConditional(Gaussian, Gaussian, Double)

    EP message to max.

    Declaration
    public static Gaussian MaxAverageConditional(Gaussian max, Gaussian a, double b)
    Parameters
    Type Name Description
    Gaussian max

    Incoming message from max.

    Gaussian a

    Incoming message from val1. Must be a proper distribution. If uniform, the result will be uniform.

    Double b

    Constant value for val2.

    Returns
    Type Description
    Gaussian

    The outgoing EP message to the max argument.

    Remarks

    The outgoing message is a distribution matching the moments of max as the random arguments are varied. The formula is proj[p(max) sum_(val1) p(val1) factor(max,val1,val2)]/p(max).

    Exceptions
    Type Condition
    ImproperMessageException

    a is not a proper distribution.

    MaxAverageConditional(Gaussian, Double, Gaussian)

    EP message to max.

    Declaration
    public static Gaussian MaxAverageConditional(Gaussian max, double a, Gaussian b)
    Parameters
    Type Name Description
    Gaussian max

    Incoming message from max.

    Double a

    Constant value for val1.

    Gaussian b

    Incoming message from val2. Must be a proper distribution. If uniform, the result will be uniform.

    Returns
    Type Description
    Gaussian

    The outgoing EP message to the max argument.

    Remarks

    The outgoing message is a distribution matching the moments of max as the random arguments are varied. The formula is proj[p(max) sum_(val2) p(val2) factor(max,val1,val2)]/p(max).

    Exceptions
    Type Condition
    ImproperMessageException

    b is not a proper distribution.

    MaxAverageConditionalInit()

    Declaration
    public static Gaussian MaxAverageConditionalInit()
    Returns
    Type Description
    Gaussian
    Remarks

    In This Article
    Back to top Copyright © .NET Foundation. All rights reserved.