Search Results for

    Show / Hide Table of Contents

    Class MatrixVectorProductOp

    Provides outgoing messages for the following factors:

    • Product(Matrix, Vector)
    • Product(Double[,], Vector)
    , given random arguments to the function.

    Inheritance
    Object
    MatrixVectorProductOp
    Inherited Members
    Object.Equals(Object)
    Object.Equals(Object, Object)
    Object.GetHashCode()
    Object.GetType()
    Object.MemberwiseClone()
    Object.ReferenceEquals(Object, Object)
    Object.ToString()
    Namespace: Microsoft.ML.Probabilistic.Factors
    Assembly: Microsoft.ML.Probabilistic.dll
    Syntax
    [FactorMethod(typeof(Factor), "Product", new Type[]{typeof(Matrix), typeof(Vector)})]
    [FactorMethod(typeof(Factor), "Product", new Type[]{typeof(double[, ]), typeof(Vector)})]
    [Buffers(new string[]{"BMean", "BVariance"})]
    [Quality(QualityBand.Stable)]
    public static class MatrixVectorProductOp

    Fields

    UseAccurateMethod

    Declaration
    public static bool UseAccurateMethod
    Field Value
    Type Description
    Boolean

    Methods

    AAverageConditional(VectorGaussian, DistributionArray2D<Gaussian, Double>, Vector, PositiveDefiniteMatrix, DistributionStructArray2D<Gaussian, Double>)

    EP message to a.

    Declaration
    public static DistributionStructArray2D<Gaussian, double> AAverageConditional(VectorGaussian product, DistributionArray2D<Gaussian, double> A, Vector BMean, PositiveDefiniteMatrix BVariance, DistributionStructArray2D<Gaussian, double> result)
    Parameters
    Type Name Description
    VectorGaussian product

    Incoming message from product. Must be a proper distribution. If any element is uniform, the result will be uniform.

    DistributionArray2D<Gaussian, Double> A

    Incoming message from a.

    Vector BMean

    Buffer BMean.

    PositiveDefiniteMatrix BVariance

    Buffer BVariance.

    DistributionStructArray2D<Gaussian, Double> result

    Modified to contain the outgoing message.

    Returns
    Type Description
    DistributionStructArray2D<Gaussian, Double>

    result

    Remarks

    The outgoing message is a distribution matching the moments of a as the random arguments are varied. The formula is proj[p(a) sum_(product) p(product) factor(product,a,b)]/p(a).

    Exceptions
    Type Condition
    ImproperMessageException

    product is not a proper distribution.

    AverageLogFactor(VectorGaussian, Matrix, VectorGaussian)

    Evidence message for VMP.

    Declaration
    public static double AverageLogFactor(VectorGaussian product, Matrix A, VectorGaussian B)
    Parameters
    Type Name Description
    VectorGaussian product

    Incoming message from product.

    Matrix A

    Constant value for a.

    VectorGaussian B

    Incoming message from b.

    Returns
    Type Description
    Double

    Zero.

    Remarks

    In Variational Message Passing, the evidence contribution of a deterministic factor is zero. Adding up these values across all factors and variables gives the log-evidence estimate for VMP.

    AverageLogFactor(Vector, Matrix, VectorGaussian, Vector, PositiveDefiniteMatrix)

    Evidence message for VMP.

    Declaration
    public static double AverageLogFactor(Vector product, Matrix A, VectorGaussian B, Vector BMean, PositiveDefiniteMatrix BVariance)
    Parameters
    Type Name Description
    Vector product

    Constant value for product.

    Matrix A

    Constant value for a.

    VectorGaussian B

    Incoming message from b.

    Vector BMean

    Buffer BMean.

    PositiveDefiniteMatrix BVariance

    Buffer BVariance.

    Returns
    Type Description
    Double

    Zero.

    Remarks

    In Variational Message Passing, the evidence contribution of a deterministic factor is zero. Adding up these values across all factors and variables gives the log-evidence estimate for VMP.

    AverageLogFactor(Vector, Matrix, Vector)

    Evidence message for VMP.

    Declaration
    public static double AverageLogFactor(Vector product, Matrix A, Vector B)
    Parameters
    Type Name Description
    Vector product

    Constant value for product.

    Matrix A

    Constant value for a.

    Vector B

    Constant value for b.

    Returns
    Type Description
    Double

    Zero.

    Remarks

    The formula for the result is log(factor(product,a,b)). Adding up these values across all factors and variables gives the log-evidence estimate for VMP.

    BAverageConditional(VectorGaussian, DistributionArray2D<Gaussian, Double>, VectorGaussian)

    Declaration
    public static VectorGaussian BAverageConditional(VectorGaussian product, DistributionArray2D<Gaussian, double> A, VectorGaussian result)
    Parameters
    Type Name Description
    VectorGaussian product
    DistributionArray2D<Gaussian, Double> A
    VectorGaussian result
    Returns
    Type Description
    VectorGaussian

    BAverageConditional(VectorGaussian, Matrix, VectorGaussian)

    EP message to b.

    Declaration
    public static VectorGaussian BAverageConditional(VectorGaussian product, Matrix A, VectorGaussian result)
    Parameters
    Type Name Description
    VectorGaussian product

    Incoming message from product. Must be a proper distribution. If any element is uniform, the result will be uniform.

    Matrix A

    Constant value for a.

    VectorGaussian result

    Modified to contain the outgoing message.

    Returns
    Type Description
    VectorGaussian

    result

    Remarks

    The outgoing message is a distribution matching the moments of b as the random arguments are varied. The formula is proj[p(b) sum_(product) p(product) factor(product,a,b)]/p(b).

    Exceptions
    Type Condition
    ImproperMessageException

    product is not a proper distribution.

    BAverageConditional(VectorGaussian, Double[,], VectorGaussian)

    EP message to b.

    Declaration
    public static VectorGaussian BAverageConditional(VectorGaussian product, double[, ] A, VectorGaussian result)
    Parameters
    Type Name Description
    VectorGaussian product

    Incoming message from product. Must be a proper distribution. If any element is uniform, the result will be uniform.

    Double[,] A

    Incoming message from a.

    VectorGaussian result

    Modified to contain the outgoing message.

    Returns
    Type Description
    VectorGaussian

    result

    Remarks

    The outgoing message is a distribution matching the moments of b as the random arguments are varied. The formula is proj[p(b) sum_(product,a) p(product,a) factor(product,a,b)]/p(b).

    Exceptions
    Type Condition
    ImproperMessageException

    product is not a proper distribution.

    BAverageConditional(VectorGaussianMoments, DistributionArray2D<Gaussian, Double>, VectorGaussian)

    Declaration
    public static VectorGaussian BAverageConditional(VectorGaussianMoments product, DistributionArray2D<Gaussian, double> A, VectorGaussian result)
    Parameters
    Type Name Description
    VectorGaussianMoments product
    DistributionArray2D<Gaussian, Double> A
    VectorGaussian result
    Returns
    Type Description
    VectorGaussian

    BAverageConditional(VectorGaussianMoments, Matrix, VectorGaussian)

    EP message to b.

    Declaration
    public static VectorGaussian BAverageConditional(VectorGaussianMoments product, Matrix A, VectorGaussian result)
    Parameters
    Type Name Description
    VectorGaussianMoments product

    Incoming message from product. Must be a proper distribution. If any element is uniform, the result will be uniform.

    Matrix A

    Constant value for a.

    VectorGaussian result

    Modified to contain the outgoing message.

    Returns
    Type Description
    VectorGaussian

    result

    Remarks

    The outgoing message is a distribution matching the moments of b as the random arguments are varied. The formula is proj[p(b) sum_(product) p(product) factor(product,a,b)]/p(b).

    Exceptions
    Type Condition
    ImproperMessageException

    product is not a proper distribution.

    BAverageConditional(VectorGaussianMoments, Double[,], VectorGaussian)

    EP message to b.

    Declaration
    public static VectorGaussian BAverageConditional(VectorGaussianMoments product, double[, ] A, VectorGaussian result)
    Parameters
    Type Name Description
    VectorGaussianMoments product

    Incoming message from product. Must be a proper distribution. If any element is uniform, the result will be uniform.

    Double[,] A

    Incoming message from a.

    VectorGaussian result

    Modified to contain the outgoing message.

    Returns
    Type Description
    VectorGaussian

    result

    Remarks

    The outgoing message is a distribution matching the moments of b as the random arguments are varied. The formula is proj[p(b) sum_(product,a) p(product,a) factor(product,a,b)]/p(b).

    Exceptions
    Type Condition
    ImproperMessageException

    product is not a proper distribution.

    BAverageConditional(Vector, Matrix, VectorGaussian)

    EP message to b.

    Declaration
    [NotSupported("A matrix-vector product with fixed output is not yet implemented.")]
    public static VectorGaussian BAverageConditional(Vector product, Matrix A, VectorGaussian result)
    Parameters
    Type Name Description
    Vector product

    Constant value for product.

    Matrix A

    Constant value for a.

    VectorGaussian result

    Modified to contain the outgoing message.

    Returns
    Type Description
    VectorGaussian

    result

    Remarks

    The outgoing message is the factor viewed as a function of b conditioned on the given values.

    BAverageLogarithm(VectorGaussian, Matrix, VectorGaussian)

    VMP message to b.

    Declaration
    public static VectorGaussian BAverageLogarithm(VectorGaussian product, Matrix A, VectorGaussian result)
    Parameters
    Type Name Description
    VectorGaussian product

    Incoming message from product. Must be a proper distribution. If any element is uniform, the result will be uniform.

    Matrix A

    Constant value for a.

    VectorGaussian result

    Modified to contain the outgoing message.

    Returns
    Type Description
    VectorGaussian

    result

    Remarks

    The outgoing message is the factor viewed as a function of b with product integrated out. The formula is sum_product p(product) factor(product,a,b).

    Exceptions
    Type Condition
    ImproperMessageException

    product is not a proper distribution.

    BAverageLogarithm(VectorGaussianMoments, Matrix, VectorGaussian)

    VMP message to b.

    Declaration
    public static VectorGaussian BAverageLogarithm(VectorGaussianMoments product, Matrix A, VectorGaussian result)
    Parameters
    Type Name Description
    VectorGaussianMoments product

    Incoming message from product. Must be a proper distribution. If any element is uniform, the result will be uniform.

    Matrix A

    Constant value for a.

    VectorGaussian result

    Modified to contain the outgoing message.

    Returns
    Type Description
    VectorGaussian

    result

    Remarks

    The outgoing message is the factor viewed as a function of b with product integrated out. The formula is sum_product p(product) factor(product,a,b).

    Exceptions
    Type Condition
    ImproperMessageException

    product is not a proper distribution.

    BAverageLogarithm(Vector, Matrix, VectorGaussian)

    VMP message to b.

    Declaration
    [NotSupported("A matrix-vector product with fixed output is not yet implemented.")]
    public static VectorGaussian BAverageLogarithm(Vector product, Matrix A, VectorGaussian result)
    Parameters
    Type Name Description
    Vector product

    Constant value for product.

    Matrix A

    Constant value for a.

    VectorGaussian result

    Modified to contain the outgoing message.

    Returns
    Type Description
    VectorGaussian

    result

    Remarks

    The outgoing message is the factor viewed as a function of b conditioned on the given values.

    BMean(VectorGaussian, PositiveDefiniteMatrix, Vector)

    Update the buffer BMean.

    Declaration
    public static Vector BMean(VectorGaussian B, PositiveDefiniteMatrix BVariance, Vector result)
    Parameters
    Type Name Description
    VectorGaussian B

    Incoming message from b. Must be a proper distribution. If any element is uniform, the result will be uniform.

    PositiveDefiniteMatrix BVariance

    Buffer BVariance.

    Vector result

    Modified to contain the outgoing message.

    Returns
    Type Description
    Vector

    result

    Remarks

    Exceptions
    Type Condition
    ImproperMessageException

    B is not a proper distribution.

    BMeanInit(VectorGaussian)

    Initialize the buffer BMean.

    Declaration
    public static Vector BMeanInit(VectorGaussian B)
    Parameters
    Type Name Description
    VectorGaussian B

    Incoming message from b.

    Returns
    Type Description
    Vector

    Initial value of buffer BMean.

    Remarks

    BVariance(VectorGaussian, PositiveDefiniteMatrix)

    Update the buffer BVariance.

    Declaration
    public static PositiveDefiniteMatrix BVariance(VectorGaussian B, PositiveDefiniteMatrix result)
    Parameters
    Type Name Description
    VectorGaussian B

    Incoming message from b. Must be a proper distribution. If any element is uniform, the result will be uniform.

    PositiveDefiniteMatrix result

    Modified to contain the outgoing message.

    Returns
    Type Description
    PositiveDefiniteMatrix

    result

    Remarks

    Exceptions
    Type Condition
    ImproperMessageException

    B is not a proper distribution.

    BVarianceInit(VectorGaussian)

    Initialize the buffer BVariance.

    Declaration
    public static PositiveDefiniteMatrix BVarianceInit(VectorGaussian B)
    Parameters
    Type Name Description
    VectorGaussian B

    Incoming message from b.

    Returns
    Type Description
    PositiveDefiniteMatrix

    Initial value of buffer BVariance.

    Remarks

    LogAverageFactor(VectorGaussian, VectorGaussian)

    Evidence message for EP.

    Declaration
    public static double LogAverageFactor(VectorGaussian product, VectorGaussian to_product)
    Parameters
    Type Name Description
    VectorGaussian product

    Incoming message from product.

    VectorGaussian to_product

    Outgoing message to product.

    Returns
    Type Description
    Double

    Logarithm of the factor's average value across the given argument distributions.

    Remarks

    The formula for the result is log(sum_(product) p(product) factor(product,a,b)).

    LogAverageFactor(Vector, Matrix, VectorGaussian, Vector, PositiveDefiniteMatrix)

    Evidence message for EP.

    Declaration
    public static double LogAverageFactor(Vector product, Matrix A, VectorGaussian B, Vector BMean, PositiveDefiniteMatrix BVariance)
    Parameters
    Type Name Description
    Vector product

    Constant value for product.

    Matrix A

    Constant value for a.

    VectorGaussian B

    Incoming message from b.

    Vector BMean

    Buffer BMean.

    PositiveDefiniteMatrix BVariance

    Buffer BVariance.

    Returns
    Type Description
    Double

    Logarithm of the factor's average value across the given argument distributions.

    Remarks

    The formula for the result is log(sum_(b) p(b) factor(product,a,b)).

    LogAverageFactor(Vector, Matrix, Vector)

    Evidence message for EP.

    Declaration
    public static double LogAverageFactor(Vector product, Matrix A, Vector B)
    Parameters
    Type Name Description
    Vector product

    Constant value for product.

    Matrix A

    Constant value for a.

    Vector B

    Constant value for b.

    Returns
    Type Description
    Double

    Logarithm of the factor's average value across the given argument distributions.

    Remarks

    The formula for the result is log(factor(product,a,b)).

    LogEvidenceRatio(VectorGaussian, Matrix, VectorGaussian)

    Evidence message for EP.

    Declaration
    public static double LogEvidenceRatio(VectorGaussian product, Matrix A, VectorGaussian B)
    Parameters
    Type Name Description
    VectorGaussian product

    Incoming message from product.

    Matrix A

    Constant value for a.

    VectorGaussian B

    Incoming message from b.

    Returns
    Type Description
    Double

    Logarithm of the factor's contribution the EP model evidence.

    Remarks

    The formula for the result is log(sum_(product,b) p(product,b) factor(product,a,b) / sum_product p(product) messageTo(product)). Adding up these values across all factors and variables gives the log-evidence estimate for EP.

    LogEvidenceRatio(Vector, Matrix, VectorGaussian, Vector, PositiveDefiniteMatrix)

    Evidence message for EP.

    Declaration
    public static double LogEvidenceRatio(Vector product, Matrix A, VectorGaussian B, Vector BMean, PositiveDefiniteMatrix BVariance)
    Parameters
    Type Name Description
    Vector product

    Constant value for product.

    Matrix A

    Constant value for a.

    VectorGaussian B

    Incoming message from b.

    Vector BMean

    Buffer BMean.

    PositiveDefiniteMatrix BVariance

    Buffer BVariance.

    Returns
    Type Description
    Double

    Logarithm of the factor's contribution the EP model evidence.

    Remarks

    The formula for the result is log(sum_(b) p(b) factor(product,a,b)). Adding up these values across all factors and variables gives the log-evidence estimate for EP.

    LogEvidenceRatio(Vector, Matrix, Vector)

    Evidence message for EP.

    Declaration
    public static double LogEvidenceRatio(Vector product, Matrix A, Vector B)
    Parameters
    Type Name Description
    Vector product

    Constant value for product.

    Matrix A

    Constant value for a.

    Vector B

    Constant value for b.

    Returns
    Type Description
    Double

    Logarithm of the factor's contribution the EP model evidence.

    Remarks

    The formula for the result is log(factor(product,a,b)). Adding up these values across all factors and variables gives the log-evidence estimate for EP.

    ProductAverageConditional(DistributionArray2D<Gaussian, Double>, Vector, PositiveDefiniteMatrix, VectorGaussian)

    EP message to product.

    Declaration
    public static VectorGaussian ProductAverageConditional(DistributionArray2D<Gaussian, double> A, Vector BMean, PositiveDefiniteMatrix BVariance, VectorGaussian result)
    Parameters
    Type Name Description
    DistributionArray2D<Gaussian, Double> A

    Incoming message from a.

    Vector BMean

    Buffer BMean.

    PositiveDefiniteMatrix BVariance

    Buffer BVariance.

    VectorGaussian result

    Modified to contain the outgoing message.

    Returns
    Type Description
    VectorGaussian

    result

    Remarks

    The outgoing message is a distribution matching the moments of product as the random arguments are varied. The formula is proj[p(product) sum_(a) p(a) factor(product,a,b)]/p(product).

    ProductAverageConditional(DistributionArray2D<Gaussian, Double>, Vector, PositiveDefiniteMatrix, VectorGaussianMoments)

    EP message to product.

    Declaration
    public static VectorGaussianMoments ProductAverageConditional(DistributionArray2D<Gaussian, double> A, Vector BMean, PositiveDefiniteMatrix BVariance, VectorGaussianMoments result)
    Parameters
    Type Name Description
    DistributionArray2D<Gaussian, Double> A

    Incoming message from a.

    Vector BMean

    Buffer BMean.

    PositiveDefiniteMatrix BVariance

    Buffer BVariance.

    VectorGaussianMoments result

    Modified to contain the outgoing message.

    Returns
    Type Description
    VectorGaussianMoments

    result

    Remarks

    The outgoing message is a distribution matching the moments of product as the random arguments are varied. The formula is proj[p(product) sum_(a) p(a) factor(product,a,b)]/p(product).

    ProductAverageConditional(Matrix, Vector, PositiveDefiniteMatrix, VectorGaussian)

    EP message to product.

    Declaration
    public static VectorGaussian ProductAverageConditional(Matrix A, Vector BMean, PositiveDefiniteMatrix BVariance, VectorGaussian result)
    Parameters
    Type Name Description
    Matrix A

    Constant value for a.

    Vector BMean

    Buffer BMean.

    PositiveDefiniteMatrix BVariance

    Buffer BVariance.

    VectorGaussian result

    Modified to contain the outgoing message.

    Returns
    Type Description
    VectorGaussian

    result

    Remarks

    The outgoing message is the factor viewed as a function of product conditioned on the given values.

    ProductAverageConditional(Matrix, Vector, PositiveDefiniteMatrix, VectorGaussianMoments)

    EP message to product.

    Declaration
    public static VectorGaussianMoments ProductAverageConditional(Matrix A, Vector BMean, PositiveDefiniteMatrix BVariance, VectorGaussianMoments result)
    Parameters
    Type Name Description
    Matrix A

    Constant value for a.

    Vector BMean

    Buffer BMean.

    PositiveDefiniteMatrix BVariance

    Buffer BVariance.

    VectorGaussianMoments result

    Modified to contain the outgoing message.

    Returns
    Type Description
    VectorGaussianMoments

    result

    Remarks

    The outgoing message is the factor viewed as a function of product conditioned on the given values.

    ProductAverageConditional(Double[,], Vector, PositiveDefiniteMatrix, VectorGaussian)

    EP message to product.

    Declaration
    public static VectorGaussian ProductAverageConditional(double[, ] A, Vector BMean, PositiveDefiniteMatrix BVariance, VectorGaussian result)
    Parameters
    Type Name Description
    Double[,] A

    Incoming message from a.

    Vector BMean

    Buffer BMean.

    PositiveDefiniteMatrix BVariance

    Buffer BVariance.

    VectorGaussian result

    Modified to contain the outgoing message.

    Returns
    Type Description
    VectorGaussian

    result

    Remarks

    The outgoing message is a distribution matching the moments of product as the random arguments are varied. The formula is proj[p(product) sum_(a) p(a) factor(product,a,b)]/p(product).

    ProductAverageConditional(Double[,], Vector, PositiveDefiniteMatrix, VectorGaussianMoments)

    EP message to product.

    Declaration
    public static VectorGaussianMoments ProductAverageConditional(double[, ] A, Vector BMean, PositiveDefiniteMatrix BVariance, VectorGaussianMoments result)
    Parameters
    Type Name Description
    Double[,] A

    Incoming message from a.

    Vector BMean

    Buffer BMean.

    PositiveDefiniteMatrix BVariance

    Buffer BVariance.

    VectorGaussianMoments result

    Modified to contain the outgoing message.

    Returns
    Type Description
    VectorGaussianMoments

    result

    Remarks

    The outgoing message is a distribution matching the moments of product as the random arguments are varied. The formula is proj[p(product) sum_(a) p(a) factor(product,a,b)]/p(product).

    ProductAverageConditionalInit(Matrix)

    Declaration
    public static VectorGaussian ProductAverageConditionalInit(Matrix A)
    Parameters
    Type Name Description
    Matrix A

    Constant value for a.

    Returns
    Type Description
    VectorGaussian
    Remarks

    ProductAverageLogarithm(Matrix, Vector, PositiveDefiniteMatrix, VectorGaussian)

    VMP message to product.

    Declaration
    public static VectorGaussian ProductAverageLogarithm(Matrix A, Vector BMean, PositiveDefiniteMatrix BVariance, VectorGaussian result)
    Parameters
    Type Name Description
    Matrix A

    Constant value for a.

    Vector BMean

    Buffer BMean.

    PositiveDefiniteMatrix BVariance

    Buffer BVariance.

    VectorGaussian result

    Modified to contain the outgoing message.

    Returns
    Type Description
    VectorGaussian

    result

    Remarks

    The outgoing message is the factor viewed as a function of product conditioned on the given values.

    ProductAverageLogarithm(Matrix, Vector, PositiveDefiniteMatrix, VectorGaussianMoments)

    VMP message to product.

    Declaration
    public static VectorGaussianMoments ProductAverageLogarithm(Matrix A, Vector BMean, PositiveDefiniteMatrix BVariance, VectorGaussianMoments result)
    Parameters
    Type Name Description
    Matrix A

    Constant value for a.

    Vector BMean

    Buffer BMean.

    PositiveDefiniteMatrix BVariance

    Buffer BVariance.

    VectorGaussianMoments result

    Modified to contain the outgoing message.

    Returns
    Type Description
    VectorGaussianMoments

    result

    Remarks

    The outgoing message is the factor viewed as a function of product conditioned on the given values.

    ProductAverageLogarithm(Double[,], Vector, PositiveDefiniteMatrix, VectorGaussian)

    VMP message to product.

    Declaration
    public static VectorGaussian ProductAverageLogarithm(double[, ] A, Vector BMean, PositiveDefiniteMatrix BVariance, VectorGaussian result)
    Parameters
    Type Name Description
    Double[,] A

    Incoming message from a.

    Vector BMean

    Buffer BMean.

    PositiveDefiniteMatrix BVariance

    Buffer BVariance.

    VectorGaussian result

    Modified to contain the outgoing message.

    Returns
    Type Description
    VectorGaussian

    result

    Remarks

    The outgoing message is a distribution matching the moments of product as the random arguments are varied. The formula is proj[sum_(a) p(a) factor(product,a,b)].

    ProductAverageLogarithm(Double[,], Vector, PositiveDefiniteMatrix, VectorGaussianMoments)

    VMP message to product.

    Declaration
    public static VectorGaussianMoments ProductAverageLogarithm(double[, ] A, Vector BMean, PositiveDefiniteMatrix BVariance, VectorGaussianMoments result)
    Parameters
    Type Name Description
    Double[,] A

    Incoming message from a.

    Vector BMean

    Buffer BMean.

    PositiveDefiniteMatrix BVariance

    Buffer BVariance.

    VectorGaussianMoments result

    Modified to contain the outgoing message.

    Returns
    Type Description
    VectorGaussianMoments

    result

    Remarks

    The outgoing message is a distribution matching the moments of product as the random arguments are varied. The formula is proj[sum_(a) p(a) factor(product,a,b)].

    ProductAverageLogarithmInit(Matrix)

    Declaration
    public static VectorGaussian ProductAverageLogarithmInit(Matrix A)
    Parameters
    Type Name Description
    Matrix A

    Constant value for a.

    Returns
    Type Description
    VectorGaussian
    Remarks

    In This Article
    Back to top Copyright © .NET Foundation. All rights reserved.