Class MatrixVectorProductOp
Provides outgoing messages for the following factors:
, given random arguments to the function.Inherited Members
Namespace: Microsoft.ML.Probabilistic.Factors
Assembly: Microsoft.ML.Probabilistic.dll
Syntax
[FactorMethod(typeof(Factor), "Product", new Type[]{typeof(Matrix), typeof(Vector)})]
[FactorMethod(typeof(Factor), "Product", new Type[]{typeof(double[, ]), typeof(Vector)})]
[Buffers(new string[]{"BMean", "BVariance"})]
[Quality(QualityBand.Stable)]
public static class MatrixVectorProductOp
Fields
UseAccurateMethod
Declaration
public static bool UseAccurateMethod
Field Value
Type | Description |
---|---|
Boolean |
Methods
AAverageConditional(VectorGaussian, DistributionArray2D<Gaussian, Double>, Vector, PositiveDefiniteMatrix, DistributionStructArray2D<Gaussian, Double>)
EP message to a
.
Declaration
public static DistributionStructArray2D<Gaussian, double> AAverageConditional(VectorGaussian product, DistributionArray2D<Gaussian, double> A, Vector BMean, PositiveDefiniteMatrix BVariance, DistributionStructArray2D<Gaussian, double> result)
Parameters
Type | Name | Description |
---|---|---|
VectorGaussian | product | Incoming message from |
DistributionArray2D<Gaussian, Double> | A | Incoming message from |
Vector | BMean | Buffer |
PositiveDefiniteMatrix | BVariance | Buffer |
DistributionStructArray2D<Gaussian, Double> | result | Modified to contain the outgoing message. |
Returns
Type | Description |
---|---|
DistributionStructArray2D<Gaussian, Double> |
|
Remarks
The outgoing message is a distribution matching the moments of a
as the random arguments are varied. The formula is proj[p(a) sum_(product) p(product) factor(product,a,b)]/p(a)
.
Exceptions
Type | Condition |
---|---|
ImproperMessageException |
|
AverageLogFactor(VectorGaussian, Matrix, VectorGaussian)
Evidence message for VMP.
Declaration
public static double AverageLogFactor(VectorGaussian product, Matrix A, VectorGaussian B)
Parameters
Type | Name | Description |
---|---|---|
VectorGaussian | product | Incoming message from |
Matrix | A | Constant value for |
VectorGaussian | B | Incoming message from |
Returns
Type | Description |
---|---|
Double | Zero. |
Remarks
In Variational Message Passing, the evidence contribution of a deterministic factor is zero. Adding up these values across all factors and variables gives the log-evidence estimate for VMP.
AverageLogFactor(Vector, Matrix, VectorGaussian, Vector, PositiveDefiniteMatrix)
Evidence message for VMP.
Declaration
public static double AverageLogFactor(Vector product, Matrix A, VectorGaussian B, Vector BMean, PositiveDefiniteMatrix BVariance)
Parameters
Type | Name | Description |
---|---|---|
Vector | product | Constant value for |
Matrix | A | Constant value for |
VectorGaussian | B | Incoming message from |
Vector | BMean | Buffer |
PositiveDefiniteMatrix | BVariance | Buffer |
Returns
Type | Description |
---|---|
Double | Zero. |
Remarks
In Variational Message Passing, the evidence contribution of a deterministic factor is zero. Adding up these values across all factors and variables gives the log-evidence estimate for VMP.
AverageLogFactor(Vector, Matrix, Vector)
Evidence message for VMP.
Declaration
public static double AverageLogFactor(Vector product, Matrix A, Vector B)
Parameters
Type | Name | Description |
---|---|---|
Vector | product | Constant value for |
Matrix | A | Constant value for |
Vector | B | Constant value for |
Returns
Type | Description |
---|---|
Double | Zero. |
Remarks
The formula for the result is log(factor(product,a,b))
. Adding up these values across all factors and variables gives the log-evidence estimate for VMP.
BAverageConditional(VectorGaussian, DistributionArray2D<Gaussian, Double>, VectorGaussian)
Declaration
public static VectorGaussian BAverageConditional(VectorGaussian product, DistributionArray2D<Gaussian, double> A, VectorGaussian result)
Parameters
Type | Name | Description |
---|---|---|
VectorGaussian | product | |
DistributionArray2D<Gaussian, Double> | A | |
VectorGaussian | result |
Returns
Type | Description |
---|---|
VectorGaussian |
BAverageConditional(VectorGaussian, Matrix, VectorGaussian)
EP message to b
.
Declaration
public static VectorGaussian BAverageConditional(VectorGaussian product, Matrix A, VectorGaussian result)
Parameters
Type | Name | Description |
---|---|---|
VectorGaussian | product | Incoming message from |
Matrix | A | Constant value for |
VectorGaussian | result | Modified to contain the outgoing message. |
Returns
Type | Description |
---|---|
VectorGaussian |
|
Remarks
The outgoing message is a distribution matching the moments of b
as the random arguments are varied. The formula is proj[p(b) sum_(product) p(product) factor(product,a,b)]/p(b)
.
Exceptions
Type | Condition |
---|---|
ImproperMessageException |
|
BAverageConditional(VectorGaussian, Double[,], VectorGaussian)
EP message to b
.
Declaration
public static VectorGaussian BAverageConditional(VectorGaussian product, double[, ] A, VectorGaussian result)
Parameters
Type | Name | Description |
---|---|---|
VectorGaussian | product | Incoming message from |
Double[,] | A | Incoming message from |
VectorGaussian | result | Modified to contain the outgoing message. |
Returns
Type | Description |
---|---|
VectorGaussian |
|
Remarks
The outgoing message is a distribution matching the moments of b
as the random arguments are varied. The formula is proj[p(b) sum_(product,a) p(product,a) factor(product,a,b)]/p(b)
.
Exceptions
Type | Condition |
---|---|
ImproperMessageException |
|
BAverageConditional(VectorGaussianMoments, DistributionArray2D<Gaussian, Double>, VectorGaussian)
Declaration
public static VectorGaussian BAverageConditional(VectorGaussianMoments product, DistributionArray2D<Gaussian, double> A, VectorGaussian result)
Parameters
Type | Name | Description |
---|---|---|
VectorGaussianMoments | product | |
DistributionArray2D<Gaussian, Double> | A | |
VectorGaussian | result |
Returns
Type | Description |
---|---|
VectorGaussian |
BAverageConditional(VectorGaussianMoments, Matrix, VectorGaussian)
EP message to b
.
Declaration
public static VectorGaussian BAverageConditional(VectorGaussianMoments product, Matrix A, VectorGaussian result)
Parameters
Type | Name | Description |
---|---|---|
VectorGaussianMoments | product | Incoming message from |
Matrix | A | Constant value for |
VectorGaussian | result | Modified to contain the outgoing message. |
Returns
Type | Description |
---|---|
VectorGaussian |
|
Remarks
The outgoing message is a distribution matching the moments of b
as the random arguments are varied. The formula is proj[p(b) sum_(product) p(product) factor(product,a,b)]/p(b)
.
Exceptions
Type | Condition |
---|---|
ImproperMessageException |
|
BAverageConditional(VectorGaussianMoments, Double[,], VectorGaussian)
EP message to b
.
Declaration
public static VectorGaussian BAverageConditional(VectorGaussianMoments product, double[, ] A, VectorGaussian result)
Parameters
Type | Name | Description |
---|---|---|
VectorGaussianMoments | product | Incoming message from |
Double[,] | A | Incoming message from |
VectorGaussian | result | Modified to contain the outgoing message. |
Returns
Type | Description |
---|---|
VectorGaussian |
|
Remarks
The outgoing message is a distribution matching the moments of b
as the random arguments are varied. The formula is proj[p(b) sum_(product,a) p(product,a) factor(product,a,b)]/p(b)
.
Exceptions
Type | Condition |
---|---|
ImproperMessageException |
|
BAverageConditional(Vector, Matrix, VectorGaussian)
EP message to b
.
Declaration
[NotSupported("A matrix-vector product with fixed output is not yet implemented.")]
public static VectorGaussian BAverageConditional(Vector product, Matrix A, VectorGaussian result)
Parameters
Type | Name | Description |
---|---|---|
Vector | product | Constant value for |
Matrix | A | Constant value for |
VectorGaussian | result | Modified to contain the outgoing message. |
Returns
Type | Description |
---|---|
VectorGaussian |
|
Remarks
The outgoing message is the factor viewed as a function of b
conditioned on the given values.
BAverageLogarithm(VectorGaussian, Matrix, VectorGaussian)
VMP message to b
.
Declaration
public static VectorGaussian BAverageLogarithm(VectorGaussian product, Matrix A, VectorGaussian result)
Parameters
Type | Name | Description |
---|---|---|
VectorGaussian | product | Incoming message from |
Matrix | A | Constant value for |
VectorGaussian | result | Modified to contain the outgoing message. |
Returns
Type | Description |
---|---|
VectorGaussian |
|
Remarks
The outgoing message is the factor viewed as a function of b
with product
integrated out. The formula is sum_product p(product) factor(product,a,b)
.
Exceptions
Type | Condition |
---|---|
ImproperMessageException |
|
BAverageLogarithm(VectorGaussianMoments, Matrix, VectorGaussian)
VMP message to b
.
Declaration
public static VectorGaussian BAverageLogarithm(VectorGaussianMoments product, Matrix A, VectorGaussian result)
Parameters
Type | Name | Description |
---|---|---|
VectorGaussianMoments | product | Incoming message from |
Matrix | A | Constant value for |
VectorGaussian | result | Modified to contain the outgoing message. |
Returns
Type | Description |
---|---|
VectorGaussian |
|
Remarks
The outgoing message is the factor viewed as a function of b
with product
integrated out. The formula is sum_product p(product) factor(product,a,b)
.
Exceptions
Type | Condition |
---|---|
ImproperMessageException |
|
BAverageLogarithm(Vector, Matrix, VectorGaussian)
VMP message to b
.
Declaration
[NotSupported("A matrix-vector product with fixed output is not yet implemented.")]
public static VectorGaussian BAverageLogarithm(Vector product, Matrix A, VectorGaussian result)
Parameters
Type | Name | Description |
---|---|---|
Vector | product | Constant value for |
Matrix | A | Constant value for |
VectorGaussian | result | Modified to contain the outgoing message. |
Returns
Type | Description |
---|---|
VectorGaussian |
|
Remarks
The outgoing message is the factor viewed as a function of b
conditioned on the given values.
BMean(VectorGaussian, PositiveDefiniteMatrix, Vector)
Update the buffer BMean
.
Declaration
public static Vector BMean(VectorGaussian B, PositiveDefiniteMatrix BVariance, Vector result)
Parameters
Type | Name | Description |
---|---|---|
VectorGaussian | B | Incoming message from |
PositiveDefiniteMatrix | BVariance | Buffer |
Vector | result | Modified to contain the outgoing message. |
Returns
Type | Description |
---|---|
Vector |
|
Remarks
Exceptions
Type | Condition |
---|---|
ImproperMessageException |
|
BMeanInit(VectorGaussian)
Initialize the buffer BMean
.
Declaration
public static Vector BMeanInit(VectorGaussian B)
Parameters
Type | Name | Description |
---|---|---|
VectorGaussian | B | Incoming message from |
Returns
Type | Description |
---|---|
Vector | Initial value of buffer |
Remarks
BVariance(VectorGaussian, PositiveDefiniteMatrix)
Update the buffer BVariance
.
Declaration
public static PositiveDefiniteMatrix BVariance(VectorGaussian B, PositiveDefiniteMatrix result)
Parameters
Type | Name | Description |
---|---|---|
VectorGaussian | B | Incoming message from |
PositiveDefiniteMatrix | result | Modified to contain the outgoing message. |
Returns
Type | Description |
---|---|
PositiveDefiniteMatrix |
|
Remarks
Exceptions
Type | Condition |
---|---|
ImproperMessageException |
|
BVarianceInit(VectorGaussian)
Initialize the buffer BVariance
.
Declaration
public static PositiveDefiniteMatrix BVarianceInit(VectorGaussian B)
Parameters
Type | Name | Description |
---|---|---|
VectorGaussian | B | Incoming message from |
Returns
Type | Description |
---|---|
PositiveDefiniteMatrix | Initial value of buffer |
Remarks
LogAverageFactor(VectorGaussian, VectorGaussian)
Evidence message for EP.
Declaration
public static double LogAverageFactor(VectorGaussian product, VectorGaussian to_product)
Parameters
Type | Name | Description |
---|---|---|
VectorGaussian | product | Incoming message from |
VectorGaussian | to_product | Outgoing message to |
Returns
Type | Description |
---|---|
Double | Logarithm of the factor's average value across the given argument distributions. |
Remarks
The formula for the result is log(sum_(product) p(product) factor(product,a,b))
.
LogAverageFactor(Vector, Matrix, VectorGaussian, Vector, PositiveDefiniteMatrix)
Evidence message for EP.
Declaration
public static double LogAverageFactor(Vector product, Matrix A, VectorGaussian B, Vector BMean, PositiveDefiniteMatrix BVariance)
Parameters
Type | Name | Description |
---|---|---|
Vector | product | Constant value for |
Matrix | A | Constant value for |
VectorGaussian | B | Incoming message from |
Vector | BMean | Buffer |
PositiveDefiniteMatrix | BVariance | Buffer |
Returns
Type | Description |
---|---|
Double | Logarithm of the factor's average value across the given argument distributions. |
Remarks
The formula for the result is log(sum_(b) p(b) factor(product,a,b))
.
LogAverageFactor(Vector, Matrix, Vector)
Evidence message for EP.
Declaration
public static double LogAverageFactor(Vector product, Matrix A, Vector B)
Parameters
Type | Name | Description |
---|---|---|
Vector | product | Constant value for |
Matrix | A | Constant value for |
Vector | B | Constant value for |
Returns
Type | Description |
---|---|
Double | Logarithm of the factor's average value across the given argument distributions. |
Remarks
The formula for the result is log(factor(product,a,b))
.
LogEvidenceRatio(VectorGaussian, Matrix, VectorGaussian)
Evidence message for EP.
Declaration
public static double LogEvidenceRatio(VectorGaussian product, Matrix A, VectorGaussian B)
Parameters
Type | Name | Description |
---|---|---|
VectorGaussian | product | Incoming message from |
Matrix | A | Constant value for |
VectorGaussian | B | Incoming message from |
Returns
Type | Description |
---|---|
Double | Logarithm of the factor's contribution the EP model evidence. |
Remarks
The formula for the result is log(sum_(product,b) p(product,b) factor(product,a,b) / sum_product p(product) messageTo(product))
. Adding up these values across all factors and variables gives the log-evidence estimate for EP.
LogEvidenceRatio(Vector, Matrix, VectorGaussian, Vector, PositiveDefiniteMatrix)
Evidence message for EP.
Declaration
public static double LogEvidenceRatio(Vector product, Matrix A, VectorGaussian B, Vector BMean, PositiveDefiniteMatrix BVariance)
Parameters
Type | Name | Description |
---|---|---|
Vector | product | Constant value for |
Matrix | A | Constant value for |
VectorGaussian | B | Incoming message from |
Vector | BMean | Buffer |
PositiveDefiniteMatrix | BVariance | Buffer |
Returns
Type | Description |
---|---|
Double | Logarithm of the factor's contribution the EP model evidence. |
Remarks
The formula for the result is log(sum_(b) p(b) factor(product,a,b))
. Adding up these values across all factors and variables gives the log-evidence estimate for EP.
LogEvidenceRatio(Vector, Matrix, Vector)
Evidence message for EP.
Declaration
public static double LogEvidenceRatio(Vector product, Matrix A, Vector B)
Parameters
Type | Name | Description |
---|---|---|
Vector | product | Constant value for |
Matrix | A | Constant value for |
Vector | B | Constant value for |
Returns
Type | Description |
---|---|
Double | Logarithm of the factor's contribution the EP model evidence. |
Remarks
The formula for the result is log(factor(product,a,b))
. Adding up these values across all factors and variables gives the log-evidence estimate for EP.
ProductAverageConditional(DistributionArray2D<Gaussian, Double>, Vector, PositiveDefiniteMatrix, VectorGaussian)
EP message to product
.
Declaration
public static VectorGaussian ProductAverageConditional(DistributionArray2D<Gaussian, double> A, Vector BMean, PositiveDefiniteMatrix BVariance, VectorGaussian result)
Parameters
Type | Name | Description |
---|---|---|
DistributionArray2D<Gaussian, Double> | A | Incoming message from |
Vector | BMean | Buffer |
PositiveDefiniteMatrix | BVariance | Buffer |
VectorGaussian | result | Modified to contain the outgoing message. |
Returns
Type | Description |
---|---|
VectorGaussian |
|
Remarks
The outgoing message is a distribution matching the moments of product
as the random arguments are varied. The formula is proj[p(product) sum_(a) p(a) factor(product,a,b)]/p(product)
.
ProductAverageConditional(DistributionArray2D<Gaussian, Double>, Vector, PositiveDefiniteMatrix, VectorGaussianMoments)
EP message to product
.
Declaration
public static VectorGaussianMoments ProductAverageConditional(DistributionArray2D<Gaussian, double> A, Vector BMean, PositiveDefiniteMatrix BVariance, VectorGaussianMoments result)
Parameters
Type | Name | Description |
---|---|---|
DistributionArray2D<Gaussian, Double> | A | Incoming message from |
Vector | BMean | Buffer |
PositiveDefiniteMatrix | BVariance | Buffer |
VectorGaussianMoments | result | Modified to contain the outgoing message. |
Returns
Type | Description |
---|---|
VectorGaussianMoments |
|
Remarks
The outgoing message is a distribution matching the moments of product
as the random arguments are varied. The formula is proj[p(product) sum_(a) p(a) factor(product,a,b)]/p(product)
.
ProductAverageConditional(Matrix, Vector, PositiveDefiniteMatrix, VectorGaussian)
EP message to product
.
Declaration
public static VectorGaussian ProductAverageConditional(Matrix A, Vector BMean, PositiveDefiniteMatrix BVariance, VectorGaussian result)
Parameters
Type | Name | Description |
---|---|---|
Matrix | A | Constant value for |
Vector | BMean | Buffer |
PositiveDefiniteMatrix | BVariance | Buffer |
VectorGaussian | result | Modified to contain the outgoing message. |
Returns
Type | Description |
---|---|
VectorGaussian |
|
Remarks
The outgoing message is the factor viewed as a function of product
conditioned on the given values.
ProductAverageConditional(Matrix, Vector, PositiveDefiniteMatrix, VectorGaussianMoments)
EP message to product
.
Declaration
public static VectorGaussianMoments ProductAverageConditional(Matrix A, Vector BMean, PositiveDefiniteMatrix BVariance, VectorGaussianMoments result)
Parameters
Type | Name | Description |
---|---|---|
Matrix | A | Constant value for |
Vector | BMean | Buffer |
PositiveDefiniteMatrix | BVariance | Buffer |
VectorGaussianMoments | result | Modified to contain the outgoing message. |
Returns
Type | Description |
---|---|
VectorGaussianMoments |
|
Remarks
The outgoing message is the factor viewed as a function of product
conditioned on the given values.
ProductAverageConditional(Double[,], Vector, PositiveDefiniteMatrix, VectorGaussian)
EP message to product
.
Declaration
public static VectorGaussian ProductAverageConditional(double[, ] A, Vector BMean, PositiveDefiniteMatrix BVariance, VectorGaussian result)
Parameters
Type | Name | Description |
---|---|---|
Double[,] | A | Incoming message from |
Vector | BMean | Buffer |
PositiveDefiniteMatrix | BVariance | Buffer |
VectorGaussian | result | Modified to contain the outgoing message. |
Returns
Type | Description |
---|---|
VectorGaussian |
|
Remarks
The outgoing message is a distribution matching the moments of product
as the random arguments are varied. The formula is proj[p(product) sum_(a) p(a) factor(product,a,b)]/p(product)
.
ProductAverageConditional(Double[,], Vector, PositiveDefiniteMatrix, VectorGaussianMoments)
EP message to product
.
Declaration
public static VectorGaussianMoments ProductAverageConditional(double[, ] A, Vector BMean, PositiveDefiniteMatrix BVariance, VectorGaussianMoments result)
Parameters
Type | Name | Description |
---|---|---|
Double[,] | A | Incoming message from |
Vector | BMean | Buffer |
PositiveDefiniteMatrix | BVariance | Buffer |
VectorGaussianMoments | result | Modified to contain the outgoing message. |
Returns
Type | Description |
---|---|
VectorGaussianMoments |
|
Remarks
The outgoing message is a distribution matching the moments of product
as the random arguments are varied. The formula is proj[p(product) sum_(a) p(a) factor(product,a,b)]/p(product)
.
ProductAverageConditionalInit(Matrix)
Declaration
public static VectorGaussian ProductAverageConditionalInit(Matrix A)
Parameters
Type | Name | Description |
---|---|---|
Matrix | A | Constant value for |
Returns
Type | Description |
---|---|
VectorGaussian |
Remarks
ProductAverageLogarithm(Matrix, Vector, PositiveDefiniteMatrix, VectorGaussian)
VMP message to product
.
Declaration
public static VectorGaussian ProductAverageLogarithm(Matrix A, Vector BMean, PositiveDefiniteMatrix BVariance, VectorGaussian result)
Parameters
Type | Name | Description |
---|---|---|
Matrix | A | Constant value for |
Vector | BMean | Buffer |
PositiveDefiniteMatrix | BVariance | Buffer |
VectorGaussian | result | Modified to contain the outgoing message. |
Returns
Type | Description |
---|---|
VectorGaussian |
|
Remarks
The outgoing message is the factor viewed as a function of product
conditioned on the given values.
ProductAverageLogarithm(Matrix, Vector, PositiveDefiniteMatrix, VectorGaussianMoments)
VMP message to product
.
Declaration
public static VectorGaussianMoments ProductAverageLogarithm(Matrix A, Vector BMean, PositiveDefiniteMatrix BVariance, VectorGaussianMoments result)
Parameters
Type | Name | Description |
---|---|---|
Matrix | A | Constant value for |
Vector | BMean | Buffer |
PositiveDefiniteMatrix | BVariance | Buffer |
VectorGaussianMoments | result | Modified to contain the outgoing message. |
Returns
Type | Description |
---|---|
VectorGaussianMoments |
|
Remarks
The outgoing message is the factor viewed as a function of product
conditioned on the given values.
ProductAverageLogarithm(Double[,], Vector, PositiveDefiniteMatrix, VectorGaussian)
VMP message to product
.
Declaration
public static VectorGaussian ProductAverageLogarithm(double[, ] A, Vector BMean, PositiveDefiniteMatrix BVariance, VectorGaussian result)
Parameters
Type | Name | Description |
---|---|---|
Double[,] | A | Incoming message from |
Vector | BMean | Buffer |
PositiveDefiniteMatrix | BVariance | Buffer |
VectorGaussian | result | Modified to contain the outgoing message. |
Returns
Type | Description |
---|---|
VectorGaussian |
|
Remarks
The outgoing message is a distribution matching the moments of product
as the random arguments are varied. The formula is proj[sum_(a) p(a) factor(product,a,b)]
.
ProductAverageLogarithm(Double[,], Vector, PositiveDefiniteMatrix, VectorGaussianMoments)
VMP message to product
.
Declaration
public static VectorGaussianMoments ProductAverageLogarithm(double[, ] A, Vector BMean, PositiveDefiniteMatrix BVariance, VectorGaussianMoments result)
Parameters
Type | Name | Description |
---|---|---|
Double[,] | A | Incoming message from |
Vector | BMean | Buffer |
PositiveDefiniteMatrix | BVariance | Buffer |
VectorGaussianMoments | result | Modified to contain the outgoing message. |
Returns
Type | Description |
---|---|
VectorGaussianMoments |
|
Remarks
The outgoing message is a distribution matching the moments of product
as the random arguments are varied. The formula is proj[sum_(a) p(a) factor(product,a,b)]
.
ProductAverageLogarithmInit(Matrix)
Declaration
public static VectorGaussian ProductAverageLogarithmInit(Matrix A)
Parameters
Type | Name | Description |
---|---|---|
Matrix | A | Constant value for |
Returns
Type | Description |
---|---|
VectorGaussian |
Remarks