Search Results for

    Show / Hide Table of Contents

    Class LogOp_EP

    Provides outgoing messages for Log(Double), given random arguments to the function.

    Inheritance
    Object
    LogOp_EP
    Inherited Members
    Object.Equals(Object)
    Object.Equals(Object, Object)
    Object.GetHashCode()
    Object.GetType()
    Object.MemberwiseClone()
    Object.ReferenceEquals(Object, Object)
    Object.ToString()
    Namespace: Microsoft.ML.Probabilistic.Factors
    Assembly: Microsoft.ML.Probabilistic.dll
    Syntax
    [FactorMethod(typeof(Math), "Log", new Type[]{typeof(double)})]
    [Quality(QualityBand.Preview)]
    public class LogOp_EP

    Methods

    AverageLogFactor(Double, Double)

    Evidence message for VMP.

    Declaration
    public static double AverageLogFactor(double log, double d)
    Parameters
    Type Name Description
    Double log

    Constant value for log.

    Double d

    Constant value for d.

    Returns
    Type Description
    Double

    Zero.

    Remarks

    The formula for the result is log(factor(log,d)). Adding up these values across all factors and variables gives the log-evidence estimate for VMP.

    DAverageConditional(Gaussian, Gamma, Gaussian)

    EP message to d.

    Declaration
    public static Gamma DAverageConditional(Gaussian log, Gamma d, Gaussian to_log)
    Parameters
    Type Name Description
    Gaussian log

    Incoming message from log. Must be a proper distribution. If uniform, the result will be uniform.

    Gamma d

    Incoming message from d.

    Gaussian to_log

    Previous outgoing message to log.

    Returns
    Type Description
    Gamma

    The outgoing EP message to the d argument.

    Remarks

    The outgoing message is a distribution matching the moments of d as the random arguments are varied. The formula is proj[p(d) sum_(log) p(log) factor(log,d)]/p(d).

    Exceptions
    Type Condition
    ImproperMessageException

    log is not a proper distribution.

    DAverageConditional(Double)

    EP message to d.

    Declaration
    public static Gamma DAverageConditional(double log)
    Parameters
    Type Name Description
    Double log

    Constant value for log.

    Returns
    Type Description
    Gamma

    The outgoing EP message to the d argument.

    Remarks

    The outgoing message is the factor viewed as a function of d conditioned on the given values.

    LogAverageConditional(Gaussian, Gamma, Gaussian)

    EP message to log.

    Declaration
    public static Gaussian LogAverageConditional(Gaussian log, Gamma d, Gaussian result)
    Parameters
    Type Name Description
    Gaussian log

    Incoming message from log. Must be a proper distribution. If uniform, the result will be uniform.

    Gamma d

    Incoming message from d. Must be a proper distribution. If uniform, the result will be uniform.

    Gaussian result

    Modified to contain the outgoing message.

    Returns
    Type Description
    Gaussian

    result

    Remarks

    The outgoing message is a distribution matching the moments of log as the random arguments are varied. The formula is proj[p(log) sum_(d) p(d) factor(log,d)]/p(log).

    Exceptions
    Type Condition
    ImproperMessageException

    log is not a proper distribution.

    ImproperMessageException

    d is not a proper distribution.

    LogAverageConditional(Double)

    EP message to log.

    Declaration
    public static Gaussian LogAverageConditional(double d)
    Parameters
    Type Name Description
    Double d

    Constant value for d.

    Returns
    Type Description
    Gaussian

    The outgoing EP message to the log argument.

    Remarks

    The outgoing message is the factor viewed as a function of log conditioned on the given values.

    LogAverageConditionalInit()

    Declaration
    public static Gaussian LogAverageConditionalInit()
    Returns
    Type Description
    Gaussian
    Remarks

    LogAverageFactor(Gaussian, Gamma, Gaussian)

    Evidence message for EP.

    Declaration
    public static double LogAverageFactor(Gaussian log, Gamma d, Gaussian to_log)
    Parameters
    Type Name Description
    Gaussian log

    Incoming message from log.

    Gamma d

    Incoming message from d.

    Gaussian to_log

    Outgoing message to log.

    Returns
    Type Description
    Double

    Logarithm of the factor's average value across the given argument distributions.

    Remarks

    The formula for the result is log(sum_(log,d) p(log,d) factor(log,d)).

    LogAverageFactor(Gaussian, Double)

    Evidence message for EP.

    Declaration
    public static double LogAverageFactor(Gaussian log, double d)
    Parameters
    Type Name Description
    Gaussian log

    Incoming message from log.

    Double d

    Constant value for d.

    Returns
    Type Description
    Double

    Logarithm of the factor's average value across the given argument distributions.

    Remarks

    The formula for the result is log(sum_(log) p(log) factor(log,d)).

    LogAverageFactor(Double, Gamma)

    Evidence message for EP.

    Declaration
    public static double LogAverageFactor(double log, Gamma d)
    Parameters
    Type Name Description
    Double log

    Constant value for log.

    Gamma d

    Incoming message from d.

    Returns
    Type Description
    Double

    Logarithm of the factor's average value across the given argument distributions.

    Remarks

    The formula for the result is log(sum_(d) p(d) factor(log,d)).

    LogAverageFactor(Double, Double)

    Evidence message for EP.

    Declaration
    public static double LogAverageFactor(double log, double d)
    Parameters
    Type Name Description
    Double log

    Constant value for log.

    Double d

    Constant value for d.

    Returns
    Type Description
    Double

    Logarithm of the factor's average value across the given argument distributions.

    Remarks

    The formula for the result is log(factor(log,d)).

    LogEvidenceRatio(Gaussian, Gamma, Gaussian)

    Evidence message for EP.

    Declaration
    public static double LogEvidenceRatio(Gaussian log, Gamma d, Gaussian to_log)
    Parameters
    Type Name Description
    Gaussian log

    Incoming message from log.

    Gamma d

    Incoming message from d.

    Gaussian to_log

    Outgoing message to log.

    Returns
    Type Description
    Double

    Logarithm of the factor's contribution the EP model evidence.

    Remarks

    The formula for the result is log(sum_(log,d) p(log,d) factor(log,d) / sum_log p(log) messageTo(log)). Adding up these values across all factors and variables gives the log-evidence estimate for EP.

    LogEvidenceRatio(Double, Gamma)

    Evidence message for EP.

    Declaration
    public static double LogEvidenceRatio(double log, Gamma d)
    Parameters
    Type Name Description
    Double log

    Constant value for log.

    Gamma d

    Incoming message from d.

    Returns
    Type Description
    Double

    Logarithm of the factor's contribution the EP model evidence.

    Remarks

    The formula for the result is log(sum_(d) p(d) factor(log,d)). Adding up these values across all factors and variables gives the log-evidence estimate for EP.

    LogEvidenceRatio(Double, Double)

    Evidence message for EP.

    Declaration
    public static double LogEvidenceRatio(double log, double d)
    Parameters
    Type Name Description
    Double log

    Constant value for log.

    Double d

    Constant value for d.

    Returns
    Type Description
    Double

    Logarithm of the factor's contribution the EP model evidence.

    Remarks

    The formula for the result is log(factor(log,d)). Adding up these values across all factors and variables gives the log-evidence estimate for EP.

    In This Article
    Back to top Copyright © .NET Foundation. All rights reserved.