Search Results for

    Show / Hide Table of Contents

    Class IsGreaterThanOp

    Provides outgoing messages for IsGreaterThan(Int32, Int32), given random arguments to the function.

    Inheritance
    Object
    IsGreaterThanOp
    Inherited Members
    Object.Equals(Object)
    Object.Equals(Object, Object)
    Object.GetHashCode()
    Object.GetType()
    Object.MemberwiseClone()
    Object.ReferenceEquals(Object, Object)
    Object.ToString()
    Namespace: Microsoft.ML.Probabilistic.Factors
    Assembly: Microsoft.ML.Probabilistic.dll
    Syntax
    [FactorMethod(typeof(Factor), "IsGreaterThan", new Type[]{typeof(int), typeof(int)})]
    [Quality(QualityBand.Preview)]
    public static class IsGreaterThanOp
    Remarks

    A and B need not have the same dimension.

    Methods

    AAverageConditional(Bernoulli, Discrete, Discrete)

    EP message to a.

    Declaration
    public static Discrete AAverageConditional(Bernoulli isGreaterThan, Discrete b, Discrete result)
    Parameters
    Type Name Description
    Bernoulli isGreaterThan

    Incoming message from isGreaterThan. Must be a proper distribution. If uniform, the result will be uniform.

    Discrete b

    Incoming message from b.

    Discrete result

    Modified to contain the outgoing message.

    Returns
    Type Description
    Discrete

    result

    Remarks

    The outgoing message is a distribution matching the moments of a as the random arguments are varied. The formula is proj[p(a) sum_(isGreaterThan,b) p(isGreaterThan,b) factor(isGreaterThan,a,b)]/p(a).

    Exceptions
    Type Condition
    ImproperMessageException

    isGreaterThan is not a proper distribution.

    AAverageConditional(Bernoulli, Poisson, Int32)

    EP message to a.

    Declaration
    public static Poisson AAverageConditional(Bernoulli isGreaterThan, Poisson a, int b)
    Parameters
    Type Name Description
    Bernoulli isGreaterThan

    Incoming message from isGreaterThan. Must be a proper distribution. If uniform, the result will be uniform.

    Poisson a

    Incoming message from a. Must be a proper distribution. If uniform, the result will be uniform.

    Int32 b

    Constant value for b.

    Returns
    Type Description
    Poisson

    The outgoing EP message to the a argument.

    Remarks

    The outgoing message is a distribution matching the moments of a as the random arguments are varied. The formula is proj[p(a) sum_(isGreaterThan) p(isGreaterThan) factor(isGreaterThan,a,b)]/p(a).

    Exceptions
    Type Condition
    ImproperMessageException

    isGreaterThan is not a proper distribution.

    ImproperMessageException

    a is not a proper distribution.

    AAverageConditional(Bernoulli, Int32, Discrete)

    EP message to a.

    Declaration
    public static Discrete AAverageConditional(Bernoulli isGreaterThan, int b, Discrete result)
    Parameters
    Type Name Description
    Bernoulli isGreaterThan

    Incoming message from isGreaterThan. Must be a proper distribution. If uniform, the result will be uniform.

    Int32 b

    Constant value for b.

    Discrete result

    Modified to contain the outgoing message.

    Returns
    Type Description
    Discrete

    result

    Remarks

    The outgoing message is a distribution matching the moments of a as the random arguments are varied. The formula is proj[p(a) sum_(isGreaterThan) p(isGreaterThan) factor(isGreaterThan,a,b)]/p(a).

    Exceptions
    Type Condition
    ImproperMessageException

    isGreaterThan is not a proper distribution.

    AAverageConditional(Boolean, Discrete, Discrete)

    EP message to a.

    Declaration
    public static Discrete AAverageConditional(bool isGreaterThan, Discrete b, Discrete result)
    Parameters
    Type Name Description
    Boolean isGreaterThan

    Constant value for isGreaterThan.

    Discrete b

    Incoming message from b.

    Discrete result

    Modified to contain the outgoing message.

    Returns
    Type Description
    Discrete

    result

    Remarks

    The outgoing message is a distribution matching the moments of a as the random arguments are varied. The formula is proj[p(a) sum_(b) p(b) factor(isGreaterThan,a,b)]/p(a).

    AAverageConditional(Boolean, Int32, Discrete)

    EP message to a.

    Declaration
    public static Discrete AAverageConditional(bool isGreaterThan, int b, Discrete result)
    Parameters
    Type Name Description
    Boolean isGreaterThan

    Constant value for isGreaterThan.

    Int32 b

    Constant value for b.

    Discrete result

    Modified to contain the outgoing message.

    Returns
    Type Description
    Discrete

    result

    Remarks

    The outgoing message is the factor viewed as a function of a conditioned on the given values.

    AAverageLogarithm(Bernoulli, Discrete, Discrete)

    VMP message to a.

    Declaration
    public static Discrete AAverageLogarithm(Bernoulli isGreaterThan, Discrete b, Discrete result)
    Parameters
    Type Name Description
    Bernoulli isGreaterThan

    Incoming message from isGreaterThan. Must be a proper distribution. If uniform, the result will be uniform.

    Discrete b

    Incoming message from b.

    Discrete result

    Modified to contain the outgoing message.

    Returns
    Type Description
    Discrete

    result

    Remarks

    The outgoing message is the exponential of the average log-factor value, where the average is over all arguments except a. Because the factor is deterministic, isGreaterThan is integrated out before taking the logarithm. The formula is exp(sum_(b) p(b) log(sum_isGreaterThan p(isGreaterThan) factor(isGreaterThan,a,b))).

    Exceptions
    Type Condition
    ImproperMessageException

    isGreaterThan is not a proper distribution.

    AAverageLogarithm(Bernoulli, Int32, Discrete)

    VMP message to a.

    Declaration
    public static Discrete AAverageLogarithm(Bernoulli isGreaterThan, int b, Discrete result)
    Parameters
    Type Name Description
    Bernoulli isGreaterThan

    Incoming message from isGreaterThan. Must be a proper distribution. If uniform, the result will be uniform.

    Int32 b

    Constant value for b.

    Discrete result

    Modified to contain the outgoing message.

    Returns
    Type Description
    Discrete

    result

    Remarks

    The outgoing message is the factor viewed as a function of a with isGreaterThan integrated out. The formula is sum_isGreaterThan p(isGreaterThan) factor(isGreaterThan,a,b).

    Exceptions
    Type Condition
    ImproperMessageException

    isGreaterThan is not a proper distribution.

    AAverageLogarithm(Boolean, Discrete, Discrete)

    VMP message to a.

    Declaration
    [NotSupported("Variational Message Passing does not support an IsGreaterThan factor with fixed output.")]
    public static Discrete AAverageLogarithm(bool isGreaterThan, Discrete b, Discrete result)
    Parameters
    Type Name Description
    Boolean isGreaterThan

    Constant value for isGreaterThan.

    Discrete b

    Incoming message from b.

    Discrete result

    Modified to contain the outgoing message.

    Returns
    Type Description
    Discrete

    result

    Remarks

    The outgoing message is the exponential of the average log-factor value, where the average is over all arguments except a. The formula is exp(sum_(b) p(b) log(factor(isGreaterThan,a,b))).

    AAverageLogarithm(Boolean, Int32, Discrete)

    VMP message to a.

    Declaration
    public static Discrete AAverageLogarithm(bool isGreaterThan, int b, Discrete result)
    Parameters
    Type Name Description
    Boolean isGreaterThan

    Constant value for isGreaterThan.

    Int32 b

    Constant value for b.

    Discrete result

    Modified to contain the outgoing message.

    Returns
    Type Description
    Discrete

    result

    Remarks

    The outgoing message is the factor viewed as a function of a conditioned on the given values.

    AverageLogFactor(Bernoulli, Discrete, Discrete)

    Evidence message for VMP.

    Declaration
    public static double AverageLogFactor(Bernoulli isGreaterThan, Discrete a, Discrete b)
    Parameters
    Type Name Description
    Bernoulli isGreaterThan

    Incoming message from isGreaterThan.

    Discrete a

    Incoming message from a.

    Discrete b

    Incoming message from b.

    Returns
    Type Description
    Double

    Zero.

    Remarks

    In Variational Message Passing, the evidence contribution of a deterministic factor is zero. Adding up these values across all factors and variables gives the log-evidence estimate for VMP.

    AverageLogFactor(Bernoulli, Discrete, Int32)

    Evidence message for VMP.

    Declaration
    public static double AverageLogFactor(Bernoulli isGreaterThan, Discrete a, int b)
    Parameters
    Type Name Description
    Bernoulli isGreaterThan

    Incoming message from isGreaterThan.

    Discrete a

    Incoming message from a.

    Int32 b

    Constant value for b.

    Returns
    Type Description
    Double

    Zero.

    Remarks

    In Variational Message Passing, the evidence contribution of a deterministic factor is zero. Adding up these values across all factors and variables gives the log-evidence estimate for VMP.

    AverageLogFactor(Bernoulli, Int32, Discrete)

    Evidence message for VMP.

    Declaration
    public static double AverageLogFactor(Bernoulli isGreaterThan, int a, Discrete b)
    Parameters
    Type Name Description
    Bernoulli isGreaterThan

    Incoming message from isGreaterThan.

    Int32 a

    Constant value for a.

    Discrete b

    Incoming message from b.

    Returns
    Type Description
    Double

    Zero.

    Remarks

    In Variational Message Passing, the evidence contribution of a deterministic factor is zero. Adding up these values across all factors and variables gives the log-evidence estimate for VMP.

    AverageLogFactor(Bernoulli, Int32, Int32)

    Evidence message for VMP.

    Declaration
    public static double AverageLogFactor(Bernoulli isGreaterThan, int a, int b)
    Parameters
    Type Name Description
    Bernoulli isGreaterThan

    Incoming message from isGreaterThan.

    Int32 a

    Constant value for a.

    Int32 b

    Constant value for b.

    Returns
    Type Description
    Double

    Zero.

    Remarks

    In Variational Message Passing, the evidence contribution of a deterministic factor is zero. Adding up these values across all factors and variables gives the log-evidence estimate for VMP.

    AverageLogFactor(Boolean, Discrete, Discrete)

    Evidence message for VMP.

    Declaration
    [NotSupported("Variational Message Passing does not support an IsGreaterThan factor with fixed output.")]
    public static double AverageLogFactor(bool isGreaterThan, Discrete a, Discrete b)
    Parameters
    Type Name Description
    Boolean isGreaterThan

    Constant value for isGreaterThan.

    Discrete a

    Incoming message from a.

    Discrete b

    Incoming message from b.

    Returns
    Type Description
    Double

    Zero.

    Remarks

    In Variational Message Passing, the evidence contribution of a deterministic factor is zero. Adding up these values across all factors and variables gives the log-evidence estimate for VMP.

    AverageLogFactor(Boolean, Discrete, Int32)

    Evidence message for VMP.

    Declaration
    public static double AverageLogFactor(bool isGreaterThan, Discrete a, int b)
    Parameters
    Type Name Description
    Boolean isGreaterThan

    Constant value for isGreaterThan.

    Discrete a

    Incoming message from a.

    Int32 b

    Constant value for b.

    Returns
    Type Description
    Double

    Zero.

    Remarks

    In Variational Message Passing, the evidence contribution of a deterministic factor is zero. Adding up these values across all factors and variables gives the log-evidence estimate for VMP.

    AverageLogFactor(Boolean, Int32, Discrete)

    Evidence message for VMP.

    Declaration
    public static double AverageLogFactor(bool isGreaterThan, int a, Discrete b)
    Parameters
    Type Name Description
    Boolean isGreaterThan

    Constant value for isGreaterThan.

    Int32 a

    Constant value for a.

    Discrete b

    Incoming message from b.

    Returns
    Type Description
    Double

    Zero.

    Remarks

    In Variational Message Passing, the evidence contribution of a deterministic factor is zero. Adding up these values across all factors and variables gives the log-evidence estimate for VMP.

    AverageLogFactor(Boolean, Int32, Int32)

    Evidence message for VMP.

    Declaration
    public static double AverageLogFactor(bool isGreaterThan, int a, int b)
    Parameters
    Type Name Description
    Boolean isGreaterThan

    Constant value for isGreaterThan.

    Int32 a

    Constant value for a.

    Int32 b

    Constant value for b.

    Returns
    Type Description
    Double

    Zero.

    Remarks

    The formula for the result is log(factor(isGreaterThan,a,b)). Adding up these values across all factors and variables gives the log-evidence estimate for VMP.

    BAverageConditional(Bernoulli, Discrete, Discrete)

    EP message to b.

    Declaration
    public static Discrete BAverageConditional(Bernoulli isGreaterThan, Discrete a, Discrete result)
    Parameters
    Type Name Description
    Bernoulli isGreaterThan

    Incoming message from isGreaterThan. Must be a proper distribution. If uniform, the result will be uniform.

    Discrete a

    Incoming message from a.

    Discrete result

    Modified to contain the outgoing message.

    Returns
    Type Description
    Discrete

    result

    Remarks

    The outgoing message is a distribution matching the moments of b as the random arguments are varied. The formula is proj[p(b) sum_(isGreaterThan,a) p(isGreaterThan,a) factor(isGreaterThan,a,b)]/p(b).

    Exceptions
    Type Condition
    ImproperMessageException

    isGreaterThan is not a proper distribution.

    BAverageConditional(Bernoulli, Int32, Discrete)

    EP message to b.

    Declaration
    public static Discrete BAverageConditional(Bernoulli isGreaterThan, int a, Discrete result)
    Parameters
    Type Name Description
    Bernoulli isGreaterThan

    Incoming message from isGreaterThan. Must be a proper distribution. If uniform, the result will be uniform.

    Int32 a

    Constant value for a.

    Discrete result

    Modified to contain the outgoing message.

    Returns
    Type Description
    Discrete

    result

    Remarks

    The outgoing message is a distribution matching the moments of b as the random arguments are varied. The formula is proj[p(b) sum_(isGreaterThan) p(isGreaterThan) factor(isGreaterThan,a,b)]/p(b).

    Exceptions
    Type Condition
    ImproperMessageException

    isGreaterThan is not a proper distribution.

    BAverageConditional(Bernoulli, Int32, Poisson)

    EP message to a.

    Declaration
    public static Poisson BAverageConditional(Bernoulli isGreaterThan, int a, Poisson b)
    Parameters
    Type Name Description
    Bernoulli isGreaterThan

    Incoming message from isGreaterThan. Must be a proper distribution. If uniform, the result will be uniform.

    Int32 a

    Incoming message from a. Must be a proper distribution. If uniform, the result will be uniform.

    Poisson b

    Constant value for b.

    Returns
    Type Description
    Poisson

    The outgoing EP message to the a argument.

    Remarks

    The outgoing message is a distribution matching the moments of a as the random arguments are varied. The formula is proj[p(a) sum_(isGreaterThan) p(isGreaterThan) factor(isGreaterThan,a,b)]/p(a).

    Exceptions
    Type Condition
    ImproperMessageException

    isGreaterThan is not a proper distribution.

    ImproperMessageException

    a is not a proper distribution.

    BAverageConditional(Boolean, Discrete, Discrete)

    EP message to b.

    Declaration
    public static Discrete BAverageConditional(bool isGreaterThan, Discrete a, Discrete result)
    Parameters
    Type Name Description
    Boolean isGreaterThan

    Constant value for isGreaterThan.

    Discrete a

    Incoming message from a.

    Discrete result

    Modified to contain the outgoing message.

    Returns
    Type Description
    Discrete

    result

    Remarks

    The outgoing message is a distribution matching the moments of b as the random arguments are varied. The formula is proj[p(b) sum_(a) p(a) factor(isGreaterThan,a,b)]/p(b).

    BAverageConditional(Boolean, Int32, Discrete)

    EP message to b.

    Declaration
    public static Discrete BAverageConditional(bool isGreaterThan, int a, Discrete result)
    Parameters
    Type Name Description
    Boolean isGreaterThan

    Constant value for isGreaterThan.

    Int32 a

    Constant value for a.

    Discrete result

    Modified to contain the outgoing message.

    Returns
    Type Description
    Discrete

    result

    Remarks

    The outgoing message is the factor viewed as a function of b conditioned on the given values.

    BAverageLogarithm(Bernoulli, Discrete, Discrete)

    VMP message to b.

    Declaration
    public static Discrete BAverageLogarithm(Bernoulli isGreaterThan, Discrete a, Discrete result)
    Parameters
    Type Name Description
    Bernoulli isGreaterThan

    Incoming message from isGreaterThan. Must be a proper distribution. If uniform, the result will be uniform.

    Discrete a

    Incoming message from a.

    Discrete result

    Modified to contain the outgoing message.

    Returns
    Type Description
    Discrete

    result

    Remarks

    The outgoing message is the exponential of the average log-factor value, where the average is over all arguments except b. Because the factor is deterministic, isGreaterThan is integrated out before taking the logarithm. The formula is exp(sum_(a) p(a) log(sum_isGreaterThan p(isGreaterThan) factor(isGreaterThan,a,b))).

    Exceptions
    Type Condition
    ImproperMessageException

    isGreaterThan is not a proper distribution.

    BAverageLogarithm(Bernoulli, Int32, Discrete)

    VMP message to b.

    Declaration
    public static Discrete BAverageLogarithm(Bernoulli isGreaterThan, int a, Discrete result)
    Parameters
    Type Name Description
    Bernoulli isGreaterThan

    Incoming message from isGreaterThan. Must be a proper distribution. If uniform, the result will be uniform.

    Int32 a

    Constant value for a.

    Discrete result

    Modified to contain the outgoing message.

    Returns
    Type Description
    Discrete

    result

    Remarks

    The outgoing message is the factor viewed as a function of b with isGreaterThan integrated out. The formula is sum_isGreaterThan p(isGreaterThan) factor(isGreaterThan,a,b).

    Exceptions
    Type Condition
    ImproperMessageException

    isGreaterThan is not a proper distribution.

    BAverageLogarithm(Boolean, Discrete, Discrete)

    VMP message to b.

    Declaration
    [NotSupported("Variational Message Passing does not support an IsGreaterThan factor with fixed output.")]
    public static Discrete BAverageLogarithm(bool isGreaterThan, Discrete a, Discrete result)
    Parameters
    Type Name Description
    Boolean isGreaterThan

    Constant value for isGreaterThan.

    Discrete a

    Incoming message from a.

    Discrete result

    Modified to contain the outgoing message.

    Returns
    Type Description
    Discrete

    result

    Remarks

    The outgoing message is the exponential of the average log-factor value, where the average is over all arguments except b. The formula is exp(sum_(a) p(a) log(factor(isGreaterThan,a,b))).

    BAverageLogarithm(Boolean, Int32, Discrete)

    VMP message to b.

    Declaration
    public static Discrete BAverageLogarithm(bool isGreaterThan, int a, Discrete result)
    Parameters
    Type Name Description
    Boolean isGreaterThan

    Constant value for isGreaterThan.

    Int32 a

    Constant value for a.

    Discrete result

    Modified to contain the outgoing message.

    Returns
    Type Description
    Discrete

    result

    Remarks

    The outgoing message is the factor viewed as a function of b conditioned on the given values.

    IsGreaterThanAverageConditional(Binomial, Int32)

    EP message to isGreaterThan.

    Declaration
    public static Bernoulli IsGreaterThanAverageConditional(Binomial a, int b)
    Parameters
    Type Name Description
    Binomial a

    Incoming message from a. Must be a proper distribution. If uniform, the result will be uniform.

    Int32 b

    Constant value for b.

    Returns
    Type Description
    Bernoulli

    The outgoing EP message to the isGreaterThan argument.

    Remarks

    The outgoing message is a distribution matching the moments of isGreaterThan as the random arguments are varied. The formula is proj[p(isGreaterThan) sum_(a) p(a) factor(isGreaterThan,a,b)]/p(isGreaterThan).

    Exceptions
    Type Condition
    ImproperMessageException

    a is not a proper distribution.

    IsGreaterThanAverageConditional(Discrete, Discrete)

    EP message to isGreaterThan.

    Declaration
    public static Bernoulli IsGreaterThanAverageConditional(Discrete a, Discrete b)
    Parameters
    Type Name Description
    Discrete a

    Incoming message from a.

    Discrete b

    Incoming message from b.

    Returns
    Type Description
    Bernoulli

    The outgoing EP message to the isGreaterThan argument.

    Remarks

    The outgoing message is a distribution matching the moments of isGreaterThan as the random arguments are varied. The formula is proj[p(isGreaterThan) sum_(a,b) p(a,b) factor(isGreaterThan,a,b)]/p(isGreaterThan).

    IsGreaterThanAverageConditional(Discrete, Int32)

    EP message to isGreaterThan.

    Declaration
    public static Bernoulli IsGreaterThanAverageConditional(Discrete a, int b)
    Parameters
    Type Name Description
    Discrete a

    Incoming message from a.

    Int32 b

    Constant value for b.

    Returns
    Type Description
    Bernoulli

    The outgoing EP message to the isGreaterThan argument.

    Remarks

    The outgoing message is a distribution matching the moments of isGreaterThan as the random arguments are varied. The formula is proj[p(isGreaterThan) sum_(a) p(a) factor(isGreaterThan,a,b)]/p(isGreaterThan).

    IsGreaterThanAverageConditional(Poisson, Int32)

    EP message to isGreaterThan.

    Declaration
    public static Bernoulli IsGreaterThanAverageConditional(Poisson a, int b)
    Parameters
    Type Name Description
    Poisson a

    Incoming message from a. Must be a proper distribution. If uniform, the result will be uniform.

    Int32 b

    Constant value for b.

    Returns
    Type Description
    Bernoulli

    The outgoing EP message to the isGreaterThan argument.

    Remarks

    The outgoing message is a distribution matching the moments of isGreaterThan as the random arguments are varied. The formula is proj[p(isGreaterThan) sum_(a) p(a) factor(isGreaterThan,a,b)]/p(isGreaterThan).

    Exceptions
    Type Condition
    ImproperMessageException

    a is not a proper distribution.

    IsGreaterThanAverageConditional(Int32, Binomial)

    EP message to isGreaterThan.

    Declaration
    public static Bernoulli IsGreaterThanAverageConditional(int a, Binomial b)
    Parameters
    Type Name Description
    Int32 a

    Constant value for a.

    Binomial b

    Incoming message from b. Must be a proper distribution. If uniform, the result will be uniform.

    Returns
    Type Description
    Bernoulli

    The outgoing EP message to the isGreaterThan argument.

    Remarks

    The outgoing message is a distribution matching the moments of isGreaterThan as the random arguments are varied. The formula is proj[p(isGreaterThan) sum_(b) p(b) factor(isGreaterThan,a,b)]/p(isGreaterThan).

    Exceptions
    Type Condition
    ImproperMessageException

    b is not a proper distribution.

    IsGreaterThanAverageConditional(Int32, Discrete)

    EP message to isGreaterThan.

    Declaration
    public static Bernoulli IsGreaterThanAverageConditional(int a, Discrete b)
    Parameters
    Type Name Description
    Int32 a

    Constant value for a.

    Discrete b

    Incoming message from b.

    Returns
    Type Description
    Bernoulli

    The outgoing EP message to the isGreaterThan argument.

    Remarks

    The outgoing message is a distribution matching the moments of isGreaterThan as the random arguments are varied. The formula is proj[p(isGreaterThan) sum_(b) p(b) factor(isGreaterThan,a,b)]/p(isGreaterThan).

    IsGreaterThanAverageConditional(Int32, Poisson)

    EP message to isGreaterThan.

    Declaration
    public static Bernoulli IsGreaterThanAverageConditional(int a, Poisson b)
    Parameters
    Type Name Description
    Int32 a

    Constant value for a.

    Poisson b

    Incoming message from b. Must be a proper distribution. If uniform, the result will be uniform.

    Returns
    Type Description
    Bernoulli

    The outgoing EP message to the isGreaterThan argument.

    Remarks

    The outgoing message is a distribution matching the moments of isGreaterThan as the random arguments are varied. The formula is proj[p(isGreaterThan) sum_(b) p(b) factor(isGreaterThan,a,b)]/p(isGreaterThan).

    Exceptions
    Type Condition
    ImproperMessageException

    b is not a proper distribution.

    IsGreaterThanAverageLogarithm(Discrete, Discrete)

    VMP message to isGreaterThan.

    Declaration
    public static Bernoulli IsGreaterThanAverageLogarithm(Discrete a, Discrete b)
    Parameters
    Type Name Description
    Discrete a

    Incoming message from a.

    Discrete b

    Incoming message from b.

    Returns
    Type Description
    Bernoulli

    The outgoing VMP message to the isGreaterThan argument.

    Remarks

    The outgoing message is a distribution matching the moments of isGreaterThan as the random arguments are varied. The formula is proj[sum_(a,b) p(a,b) factor(isGreaterThan,a,b)].

    IsGreaterThanAverageLogarithm(Discrete, Int32)

    VMP message to isGreaterThan.

    Declaration
    public static Bernoulli IsGreaterThanAverageLogarithm(Discrete a, int b)
    Parameters
    Type Name Description
    Discrete a

    Incoming message from a.

    Int32 b

    Constant value for b.

    Returns
    Type Description
    Bernoulli

    The outgoing VMP message to the isGreaterThan argument.

    Remarks

    The outgoing message is a distribution matching the moments of isGreaterThan as the random arguments are varied. The formula is proj[sum_(a) p(a) factor(isGreaterThan,a,b)].

    IsGreaterThanAverageLogarithm(Int32, Discrete)

    VMP message to isGreaterThan.

    Declaration
    public static Bernoulli IsGreaterThanAverageLogarithm(int a, Discrete b)
    Parameters
    Type Name Description
    Int32 a

    Constant value for a.

    Discrete b

    Incoming message from b.

    Returns
    Type Description
    Bernoulli

    The outgoing VMP message to the isGreaterThan argument.

    Remarks

    The outgoing message is a distribution matching the moments of isGreaterThan as the random arguments are varied. The formula is proj[sum_(b) p(b) factor(isGreaterThan,a,b)].

    LogAverageFactor(Bernoulli, Discrete, Bernoulli)

    Evidence message for EP.

    Declaration
    public static double LogAverageFactor(Bernoulli isGreaterThan, Discrete a, Bernoulli to_isGreaterThan)
    Parameters
    Type Name Description
    Bernoulli isGreaterThan

    Incoming message from isGreaterThan.

    Discrete a

    Incoming message from a.

    Bernoulli to_isGreaterThan

    Outgoing message to isGreaterThan.

    Returns
    Type Description
    Double

    Logarithm of the factor's average value across the given argument distributions.

    Remarks

    The formula for the result is log(sum_(isGreaterThan,a) p(isGreaterThan,a) factor(isGreaterThan,a,b)).

    LogAverageFactor(Bernoulli, Int32, Discrete, Bernoulli)

    Evidence message for EP.

    Declaration
    public static double LogAverageFactor(Bernoulli isGreaterThan, int a, Discrete b, Bernoulli to_isGreaterThan)
    Parameters
    Type Name Description
    Bernoulli isGreaterThan

    Incoming message from isGreaterThan.

    Int32 a

    Constant value for a.

    Discrete b

    Incoming message from b.

    Bernoulli to_isGreaterThan

    Outgoing message to isGreaterThan.

    Returns
    Type Description
    Double

    Logarithm of the factor's average value across the given argument distributions.

    Remarks

    The formula for the result is log(sum_(isGreaterThan,b) p(isGreaterThan,b) factor(isGreaterThan,a,b)).

    LogAverageFactor(Bernoulli, Int32, Int32)

    Evidence message for EP.

    Declaration
    public static double LogAverageFactor(Bernoulli isGreaterThan, int a, int b)
    Parameters
    Type Name Description
    Bernoulli isGreaterThan

    Incoming message from isGreaterThan.

    Int32 a

    Constant value for a.

    Int32 b

    Constant value for b.

    Returns
    Type Description
    Double

    Logarithm of the factor's average value across the given argument distributions.

    Remarks

    The formula for the result is log(sum_(isGreaterThan) p(isGreaterThan) factor(isGreaterThan,a,b)).

    LogAverageFactor(Boolean, Discrete, Discrete)

    Evidence message for EP.

    Declaration
    public static double LogAverageFactor(bool isGreaterThan, Discrete a, Discrete b)
    Parameters
    Type Name Description
    Boolean isGreaterThan

    Constant value for isGreaterThan.

    Discrete a

    Incoming message from a.

    Discrete b

    Incoming message from b.

    Returns
    Type Description
    Double

    Logarithm of the factor's average value across the given argument distributions.

    Remarks

    The formula for the result is log(sum_(a,b) p(a,b) factor(isGreaterThan,a,b)).

    LogAverageFactor(Boolean, Discrete, Int32)

    Evidence message for EP.

    Declaration
    public static double LogAverageFactor(bool isGreaterThan, Discrete a, int b)
    Parameters
    Type Name Description
    Boolean isGreaterThan

    Constant value for isGreaterThan.

    Discrete a

    Incoming message from a.

    Int32 b

    Constant value for b.

    Returns
    Type Description
    Double

    Logarithm of the factor's average value across the given argument distributions.

    Remarks

    The formula for the result is log(sum_(a) p(a) factor(isGreaterThan,a,b)).

    LogAverageFactor(Boolean, Int32, Discrete)

    Evidence message for EP.

    Declaration
    public static double LogAverageFactor(bool isGreaterThan, int a, Discrete b)
    Parameters
    Type Name Description
    Boolean isGreaterThan

    Constant value for isGreaterThan.

    Int32 a

    Constant value for a.

    Discrete b

    Incoming message from b.

    Returns
    Type Description
    Double

    Logarithm of the factor's average value across the given argument distributions.

    Remarks

    The formula for the result is log(sum_(b) p(b) factor(isGreaterThan,a,b)).

    LogAverageFactor(Boolean, Int32, Int32)

    Evidence message for EP.

    Declaration
    public static double LogAverageFactor(bool isGreaterThan, int a, int b)
    Parameters
    Type Name Description
    Boolean isGreaterThan

    Constant value for isGreaterThan.

    Int32 a

    Constant value for a.

    Int32 b

    Constant value for b.

    Returns
    Type Description
    Double

    Logarithm of the factor's average value across the given argument distributions.

    Remarks

    The formula for the result is log(factor(isGreaterThan,a,b)).

    LogEvidenceRatio(Bernoulli)

    Evidence message for EP.

    Declaration
    public static double LogEvidenceRatio(Bernoulli isGreaterThan)
    Parameters
    Type Name Description
    Bernoulli isGreaterThan

    Incoming message from isGreaterThan.

    Returns
    Type Description
    Double

    Logarithm of the factor's contribution the EP model evidence.

    Remarks

    The formula for the result is log(sum_(isGreaterThan) p(isGreaterThan) factor(isGreaterThan,a,b) / sum_isGreaterThan p(isGreaterThan) messageTo(isGreaterThan)). Adding up these values across all factors and variables gives the log-evidence estimate for EP.

    LogEvidenceRatio(Boolean, Discrete, Discrete)

    Evidence message for EP.

    Declaration
    public static double LogEvidenceRatio(bool isGreaterThan, Discrete a, Discrete b)
    Parameters
    Type Name Description
    Boolean isGreaterThan

    Constant value for isGreaterThan.

    Discrete a

    Incoming message from a.

    Discrete b

    Incoming message from b.

    Returns
    Type Description
    Double

    Logarithm of the factor's contribution the EP model evidence.

    Remarks

    The formula for the result is log(sum_(a,b) p(a,b) factor(isGreaterThan,a,b)). Adding up these values across all factors and variables gives the log-evidence estimate for EP.

    LogEvidenceRatio(Boolean, Discrete, Int32)

    Evidence message for EP.

    Declaration
    public static double LogEvidenceRatio(bool isGreaterThan, Discrete a, int b)
    Parameters
    Type Name Description
    Boolean isGreaterThan

    Constant value for isGreaterThan.

    Discrete a

    Incoming message from a.

    Int32 b

    Constant value for b.

    Returns
    Type Description
    Double

    Logarithm of the factor's contribution the EP model evidence.

    Remarks

    The formula for the result is log(sum_(a) p(a) factor(isGreaterThan,a,b)). Adding up these values across all factors and variables gives the log-evidence estimate for EP.

    LogEvidenceRatio(Boolean, Int32, Discrete)

    Evidence message for EP.

    Declaration
    public static double LogEvidenceRatio(bool isGreaterThan, int a, Discrete b)
    Parameters
    Type Name Description
    Boolean isGreaterThan

    Constant value for isGreaterThan.

    Int32 a

    Constant value for a.

    Discrete b

    Incoming message from b.

    Returns
    Type Description
    Double

    Logarithm of the factor's contribution the EP model evidence.

    Remarks

    The formula for the result is log(sum_(b) p(b) factor(isGreaterThan,a,b)). Adding up these values across all factors and variables gives the log-evidence estimate for EP.

    LogEvidenceRatio(Boolean, Int32, Int32)

    Evidence message for EP.

    Declaration
    public static double LogEvidenceRatio(bool isGreaterThan, int a, int b)
    Parameters
    Type Name Description
    Boolean isGreaterThan

    Constant value for isGreaterThan.

    Int32 a

    Constant value for a.

    Int32 b

    Constant value for b.

    Returns
    Type Description
    Double

    Logarithm of the factor's contribution the EP model evidence.

    Remarks

    The formula for the result is log(factor(isGreaterThan,a,b)). Adding up these values across all factors and variables gives the log-evidence estimate for EP.

    In This Article
    Back to top Copyright © .NET Foundation. All rights reserved.