Search Results for

    Show / Hide Table of Contents

    Class InnerProductPartialCovarianceOp

    Inheritance
    Object
    InnerProductPartialCovarianceOp
    Inherited Members
    Object.Equals(Object)
    Object.Equals(Object, Object)
    Object.GetHashCode()
    Object.GetType()
    Object.MemberwiseClone()
    Object.ReferenceEquals(Object, Object)
    Object.ToString()
    Namespace: Microsoft.ML.Probabilistic.Factors
    Assembly: Microsoft.ML.Probabilistic.dll
    Syntax
    [FactorMethod(typeof(Factor), "InnerProduct", new Type[]{typeof(double[]), typeof(Vector)})]
    [Buffers(new string[]{"MeanOfB", "CovarianceOfB"})]
    [Quality(QualityBand.Preview)]
    public static class InnerProductPartialCovarianceOp

    Methods

    AAverageLogarithm(Gaussian, DistributionStructArray<Gaussian, Double>, VectorGaussian, Vector, PositiveDefiniteMatrix, DistributionStructArray<Gaussian, Double>)

    VMP message to A.

    Declaration
    public static DistributionStructArray<Gaussian, double> AAverageLogarithm(Gaussian X, DistributionStructArray<Gaussian, double> A, VectorGaussian B, Vector MeanOfB, PositiveDefiniteMatrix CovarianceOfB, DistributionStructArray<Gaussian, double> result)
    Parameters
    Type Name Description
    Gaussian X

    Incoming message from X. Must be a proper distribution. If uniform, the result will be uniform.

    DistributionStructArray<Gaussian, Double> A

    Incoming message from A.

    VectorGaussian B

    Incoming message from B. Must be a proper distribution. If any element is uniform, the result will be uniform.

    Vector MeanOfB

    Buffer MeanOfB.

    PositiveDefiniteMatrix CovarianceOfB

    Buffer CovarianceOfB.

    DistributionStructArray<Gaussian, Double> result

    Modified to contain the outgoing message.

    Returns
    Type Description
    DistributionStructArray<Gaussian, Double>

    result

    Remarks

    The outgoing message is the exponential of the average log-factor value, where the average is over all arguments except A. Because the factor is deterministic, X is integrated out before taking the logarithm. The formula is exp(sum_(B) p(B) log(sum_X p(X) factor(X,A,B))).

    Exceptions
    Type Condition
    ImproperMessageException

    X is not a proper distribution.

    ImproperMessageException

    B is not a proper distribution.

    AverageLogFactor()

    Evidence message for VMP.

    Declaration
    public static double AverageLogFactor()
    Returns
    Type Description
    Double

    Zero.

    Remarks

    The formula for the result is log(factor(X,A,B)). Adding up these values across all factors and variables gives the log-evidence estimate for VMP.

    BAverageLogarithm(Gaussian, DistributionStructArray<Gaussian, Double>, VectorGaussian)

    VMP message to B.

    Declaration
    public static VectorGaussian BAverageLogarithm(Gaussian X, [SkipIfAllUniform] DistributionStructArray<Gaussian, double> A, VectorGaussian result)
    Parameters
    Type Name Description
    Gaussian X

    Incoming message from X. Must be a proper distribution. If uniform, the result will be uniform.

    DistributionStructArray<Gaussian, Double> A

    Incoming message from A. Must be a proper distribution. If all elements are uniform, the result will be uniform.

    VectorGaussian result

    Modified to contain the outgoing message.

    Returns
    Type Description
    VectorGaussian

    result

    Remarks

    The outgoing message is the exponential of the average log-factor value, where the average is over all arguments except B. Because the factor is deterministic, X is integrated out before taking the logarithm. The formula is exp(sum_(A) p(A) log(sum_X p(X) factor(X,A,B))).

    Exceptions
    Type Condition
    ImproperMessageException

    X is not a proper distribution.

    ImproperMessageException

    A is not a proper distribution.

    BAverageLogarithm(Gaussian, Double[], VectorGaussian)

    VMP message to B.

    Declaration
    public static VectorGaussian BAverageLogarithm(Gaussian X, [SkipIfAllUniform] double[] A, VectorGaussian result)
    Parameters
    Type Name Description
    Gaussian X

    Incoming message from X. Must be a proper distribution. If uniform, the result will be uniform.

    Double[] A

    Constant value for A.

    VectorGaussian result

    Modified to contain the outgoing message.

    Returns
    Type Description
    VectorGaussian

    result

    Remarks

    The outgoing message is the factor viewed as a function of B with X integrated out. The formula is sum_X p(X) factor(X,A,B).

    Exceptions
    Type Condition
    ImproperMessageException

    X is not a proper distribution.

    CovarianceOfB(VectorGaussian, PositiveDefiniteMatrix)

    Update the buffer CovarianceOfB.

    Declaration
    public static PositiveDefiniteMatrix CovarianceOfB(VectorGaussian B, PositiveDefiniteMatrix result)
    Parameters
    Type Name Description
    VectorGaussian B

    Incoming message from B. Must be a proper distribution. If any element is uniform, the result will be uniform.

    PositiveDefiniteMatrix result

    Modified to contain the outgoing message.

    Returns
    Type Description
    PositiveDefiniteMatrix

    result

    Remarks

    Exceptions
    Type Condition
    ImproperMessageException

    B is not a proper distribution.

    CovarianceOfBInit(VectorGaussian)

    Initialize the buffer CovarianceOfB.

    Declaration
    public static PositiveDefiniteMatrix CovarianceOfBInit(VectorGaussian B)
    Parameters
    Type Name Description
    VectorGaussian B

    Incoming message from B.

    Returns
    Type Description
    PositiveDefiniteMatrix

    Initial value of buffer CovarianceOfB.

    Remarks

    Eaat(DistributionStructArray<Gaussian, Double>, PositiveDefiniteMatrix)

    Declaration
    public static PositiveDefiniteMatrix Eaat(DistributionStructArray<Gaussian, double> A, PositiveDefiniteMatrix result)
    Parameters
    Type Name Description
    DistributionStructArray<Gaussian, Double> A

    Incoming message from A.

    PositiveDefiniteMatrix result

    Modified to contain the outgoing message.

    Returns
    Type Description
    PositiveDefiniteMatrix

    result

    Remarks

    EaatInit(DistributionStructArray<Gaussian, Double>)

    Declaration
    public static PositiveDefiniteMatrix EaatInit(DistributionStructArray<Gaussian, double> A)
    Parameters
    Type Name Description
    DistributionStructArray<Gaussian, Double> A

    Incoming message from A.

    Returns
    Type Description
    PositiveDefiniteMatrix
    Remarks

    Ebbt(PositiveDefiniteMatrix, Vector, PositiveDefiniteMatrix)

    Declaration
    public static PositiveDefiniteMatrix Ebbt(PositiveDefiniteMatrix CovarianceOfB, Vector MeanOfB, PositiveDefiniteMatrix result)
    Parameters
    Type Name Description
    PositiveDefiniteMatrix CovarianceOfB

    Buffer CovarianceOfB.

    Vector MeanOfB

    Buffer MeanOfB.

    PositiveDefiniteMatrix result

    Modified to contain the outgoing message.

    Returns
    Type Description
    PositiveDefiniteMatrix

    result

    Remarks

    EbbtInit(VectorGaussian)

    Declaration
    public static PositiveDefiniteMatrix EbbtInit(VectorGaussian B)
    Parameters
    Type Name Description
    VectorGaussian B

    Incoming message from B.

    Returns
    Type Description
    PositiveDefiniteMatrix
    Remarks

    MeanOfB(VectorGaussian, PositiveDefiniteMatrix, Vector)

    Update the buffer MeanOfB.

    Declaration
    public static Vector MeanOfB(VectorGaussian B, PositiveDefiniteMatrix CovarianceOfB, Vector result)
    Parameters
    Type Name Description
    VectorGaussian B

    Incoming message from B. Must be a proper distribution. If any element is uniform, the result will be uniform.

    PositiveDefiniteMatrix CovarianceOfB

    Buffer CovarianceOfB.

    Vector result

    Modified to contain the outgoing message.

    Returns
    Type Description
    Vector

    result

    Remarks

    Exceptions
    Type Condition
    ImproperMessageException

    B is not a proper distribution.

    MeanOfBInit(VectorGaussian)

    Initialize the buffer MeanOfB.

    Declaration
    public static Vector MeanOfBInit(VectorGaussian B)
    Parameters
    Type Name Description
    VectorGaussian B

    Incoming message from B.

    Returns
    Type Description
    Vector

    Initial value of buffer MeanOfB.

    Remarks

    XAverageLogarithm(DistributionStructArray<Gaussian, Double>, VectorGaussian, Vector, PositiveDefiniteMatrix)

    VMP message to X.

    Declaration
    public static Gaussian XAverageLogarithm([SkipIfAllUniform] DistributionStructArray<Gaussian, double> A, [SkipIfAllUniform] VectorGaussian B, Vector MeanOfB, PositiveDefiniteMatrix CovarianceOfB)
    Parameters
    Type Name Description
    DistributionStructArray<Gaussian, Double> A

    Incoming message from A. Must be a proper distribution. If all elements are uniform, the result will be uniform.

    VectorGaussian B

    Incoming message from B. Must be a proper distribution. If all elements are uniform, the result will be uniform.

    Vector MeanOfB

    Buffer MeanOfB.

    PositiveDefiniteMatrix CovarianceOfB

    Buffer CovarianceOfB.

    Returns
    Type Description
    Gaussian

    The outgoing VMP message to the X argument.

    Remarks

    The outgoing message is a distribution matching the moments of X as the random arguments are varied. The formula is proj[sum_(A,B) p(A,B) factor(X,A,B)].

    Exceptions
    Type Condition
    ImproperMessageException

    A is not a proper distribution.

    ImproperMessageException

    B is not a proper distribution.

    XAverageLogarithm(Double[], VectorGaussian, Vector, PositiveDefiniteMatrix)

    VMP message to X.

    Declaration
    public static Gaussian XAverageLogarithm([SkipIfAllUniform] double[] A, [SkipIfAllUniform] VectorGaussian B, Vector MeanOfB, PositiveDefiniteMatrix CovarianceOfB)
    Parameters
    Type Name Description
    Double[] A

    Constant value for A.

    VectorGaussian B

    Incoming message from B. Must be a proper distribution. If all elements are uniform, the result will be uniform.

    Vector MeanOfB

    Buffer MeanOfB.

    PositiveDefiniteMatrix CovarianceOfB

    Buffer CovarianceOfB.

    Returns
    Type Description
    Gaussian

    The outgoing VMP message to the X argument.

    Remarks

    The outgoing message is a distribution matching the moments of X as the random arguments are varied. The formula is proj[sum_(B) p(B) factor(X,A,B)].

    Exceptions
    Type Condition
    ImproperMessageException

    B is not a proper distribution.

    XAverageLogarithmInit()

    Declaration
    public static Gaussian XAverageLogarithmInit()
    Returns
    Type Description
    Gaussian
    Remarks

    In This Article
    Back to top Copyright © .NET Foundation. All rights reserved.