Search Results for

    Show / Hide Table of Contents

    Class IndexOfMaximumStochasticOp

    Provides outgoing messages for IndexOfMaximumDouble(IList<Double>), given random arguments to the function.

    Inheritance
    Object
    IndexOfMaximumStochasticOp
    Inherited Members
    Object.Equals(Object)
    Object.Equals(Object, Object)
    Object.GetHashCode()
    Object.GetType()
    Object.MemberwiseClone()
    Object.ReferenceEquals(Object, Object)
    Object.ToString()
    Namespace: Microsoft.ML.Probabilistic.Factors
    Assembly: Microsoft.ML.Probabilistic.dll
    Syntax
    [FactorMethod(typeof(MMath), "IndexOfMaximumDouble", new Type[]{}, Default = true)]
    [Quality(QualityBand.Experimental)]
    [Buffers(new string[]{"Buffers"})]
    public static class IndexOfMaximumStochasticOp

    Methods

    Buffers<GaussianList>(IndexOfMaximumBuffer[], GaussianList, Discrete)

    Update the buffer Buffers.

    Declaration
    public static IndexOfMaximumBuffer[] Buffers<GaussianList>(IndexOfMaximumBuffer[] Buffers, GaussianList list, Discrete IndexOfMaximumDouble)
        where GaussianList : IList<Gaussian>
    Parameters
    Type Name Description
    IndexOfMaximumBuffer[] Buffers

    Buffer Buffers.

    GaussianList list

    Incoming message from list. Must be a proper distribution. If any element is uniform, the result will be uniform.

    Discrete IndexOfMaximumDouble

    Incoming message from indexOfMaximumDouble.

    Returns
    Type Description
    IndexOfMaximumBuffer[]

    New value of buffer Buffers.

    Type Parameters
    Name Description
    GaussianList

    The type of an incoming message from list.

    Remarks

    Exceptions
    Type Condition
    ImproperMessageException

    list is not a proper distribution.

    BuffersInit<GaussianList>(GaussianList, Discrete)

    Initialize the buffer Buffers.

    Declaration
    public static IndexOfMaximumBuffer[] BuffersInit<GaussianList>(GaussianList list, Discrete IndexOfMaximumDouble)
        where GaussianList : IList<Gaussian>
    Parameters
    Type Name Description
    GaussianList list

    Incoming message from list.

    Discrete IndexOfMaximumDouble

    Incoming message from indexOfMaximumDouble.

    Returns
    Type Description
    IndexOfMaximumBuffer[]

    Initial value of buffer Buffers.

    Type Parameters
    Name Description
    GaussianList

    The type of an incoming message from list.

    Remarks

    IndexOfMaximumDoubleAverageConditional<GaussianList>(GaussianList, IndexOfMaximumBuffer[])

    EP message to indexOfMaximumDouble.

    Declaration
    public static Discrete IndexOfMaximumDoubleAverageConditional<GaussianList>(GaussianList list, IndexOfMaximumBuffer[] Buffers)
        where GaussianList : DistributionStructArray<Gaussian, double>
    Parameters
    Type Name Description
    GaussianList list

    Incoming message from list.

    IndexOfMaximumBuffer[] Buffers

    Buffer Buffers.

    Returns
    Type Description
    Discrete

    The outgoing EP message to the indexOfMaximumDouble argument.

    Type Parameters
    Name Description
    GaussianList

    The type of an incoming message from list.

    Remarks

    The outgoing message is a distribution matching the moments of indexOfMaximumDouble as the random arguments are varied. The formula is proj[p(indexOfMaximumDouble) sum_(list) p(list) factor(indexOfMaximumDouble,list)]/p(indexOfMaximumDouble).

    ListAverageConditional<GaussianList>(IndexOfMaximumBuffer[], GaussianList, Discrete, GaussianList)

    EP message to list.

    Declaration
    public static GaussianList ListAverageConditional<GaussianList>(IndexOfMaximumBuffer[] Buffers, GaussianList list, Discrete IndexOfMaximumDouble, GaussianList result)
        where GaussianList : DistributionStructArray<Gaussian, double>
    Parameters
    Type Name Description
    IndexOfMaximumBuffer[] Buffers

    Buffer Buffers.

    GaussianList list

    Incoming message from list.

    Discrete IndexOfMaximumDouble

    Incoming message from indexOfMaximumDouble. Must be a proper distribution. If uniform, the result will be uniform.

    GaussianList result

    Modified to contain the outgoing message.

    Returns
    Type Description
    GaussianList

    result

    Type Parameters
    Name Description
    GaussianList

    The type of an incoming message from list.

    Remarks

    The outgoing message is a distribution matching the moments of list as the random arguments are varied. The formula is proj[p(list) sum_(indexOfMaximumDouble) p(indexOfMaximumDouble) factor(indexOfMaximumDouble,list)]/p(list).

    Exceptions
    Type Condition
    ImproperMessageException

    IndexOfMaximumDouble is not a proper distribution.

    LogAverageFactor<GaussianList>(GaussianList, GaussianList, IndexOfMaximumBuffer[], Discrete)

    Evidence message for EP.

    Declaration
    public static double LogAverageFactor<GaussianList>(GaussianList list, GaussianList to_list, IndexOfMaximumBuffer[] Buffers, Discrete IndexOfMaximumDouble)
        where GaussianList : DistributionStructArray<Gaussian, double>
    Parameters
    Type Name Description
    GaussianList list

    Incoming message from list. Must be a proper distribution. If any element is uniform, the result will be uniform.

    GaussianList to_list

    Previous outgoing message to list.

    IndexOfMaximumBuffer[] Buffers

    Buffer Buffers.

    Discrete IndexOfMaximumDouble

    Incoming message from indexOfMaximumDouble.

    Returns
    Type Description
    Double

    Logarithm of the factor's average value across the given argument distributions.

    Type Parameters
    Name Description
    GaussianList

    The type of an incoming message from list.

    Remarks

    The formula for the result is log(sum_(list,indexOfMaximumDouble) p(list,indexOfMaximumDouble) factor(indexOfMaximumDouble,list)).

    Exceptions
    Type Condition
    ImproperMessageException

    list is not a proper distribution.

    LogEvidenceRatio<GaussianList>(GaussianList, GaussianList, Discrete, Discrete, IndexOfMaximumBuffer[])

    Evidence message for EP.

    Declaration
    public static double LogEvidenceRatio<GaussianList>(GaussianList list, GaussianList to_list, Discrete IndexOfMaximumDouble, Discrete to_IndexOfMaximumDouble, IndexOfMaximumBuffer[] Buffers)
        where GaussianList : DistributionStructArray<Gaussian, double>
    Parameters
    Type Name Description
    GaussianList list

    Incoming message from list.

    GaussianList to_list

    Previous outgoing message to list.

    Discrete IndexOfMaximumDouble

    Incoming message from indexOfMaximumDouble.

    Discrete to_IndexOfMaximumDouble

    Previous outgoing message to IndexOfMaximumDouble.

    IndexOfMaximumBuffer[] Buffers

    Buffer Buffers.

    Returns
    Type Description
    Double

    Logarithm of the factor's contribution the EP model evidence.

    Type Parameters
    Name Description
    GaussianList

    The type of an incoming message from list.

    Remarks

    The formula for the result is log(sum_(list,indexOfMaximumDouble) p(list,indexOfMaximumDouble) factor(indexOfMaximumDouble,list) / sum_indexOfMaximumDouble p(indexOfMaximumDouble) messageTo(indexOfMaximumDouble)). Adding up these values across all factors and variables gives the log-evidence estimate for EP.

    In This Article
    Back to top Copyright © .NET Foundation. All rights reserved.