Class IndexOfMaximumOp
Provides outgoing messages for IndexOfMaximumDouble(IList<Double>), given random arguments to the function.
Inherited Members
Namespace: Microsoft.ML.Probabilistic.Factors
Assembly: Microsoft.ML.Probabilistic.dll
Syntax
[FactorMethod(typeof(MMath), "IndexOfMaximumDouble", new Type[]{})]
[Quality(QualityBand.Experimental)]
[Buffers(new string[]{"Buffer"})]
public static class IndexOfMaximumOpMethods
Buffer<GaussianList>(IndexOfMaximumBuffer, GaussianList, Int32)
Update the buffer Buffer.
Declaration
public static IndexOfMaximumBuffer Buffer<GaussianList>(IndexOfMaximumBuffer Buffer, GaussianList list, int IndexOfMaximumDouble)
    where GaussianList : IList<Gaussian>Parameters
| Type | Name | Description | 
|---|---|---|
| IndexOfMaximumBuffer | Buffer | Buffer  | 
| GaussianList | list | Incoming message from  | 
| Int32 | IndexOfMaximumDouble | Constant value for  | 
Returns
| Type | Description | 
|---|---|
| IndexOfMaximumBuffer | New value of buffer  | 
Type Parameters
| Name | Description | 
|---|---|
| GaussianList | The type of an incoming message from  | 
Remarks
BufferInit<GaussianList>(GaussianList)
Initialize the buffer Buffer.
Declaration
public static IndexOfMaximumBuffer BufferInit<GaussianList>(GaussianList list)
    where GaussianList : IList<Gaussian>Parameters
| Type | Name | Description | 
|---|---|---|
| GaussianList | list | Incoming message from  | 
Returns
| Type | Description | 
|---|---|
| IndexOfMaximumBuffer | Initial value of buffer  | 
Type Parameters
| Name | Description | 
|---|---|
| GaussianList | The type of an incoming message from  | 
Remarks
listAverageConditional<GaussianList>(IndexOfMaximumBuffer, GaussianList, Int32)
EP message to list.
Declaration
public static GaussianList listAverageConditional<GaussianList>(IndexOfMaximumBuffer Buffer, GaussianList to_list, int IndexOfMaximumDouble)
    where GaussianList : IList<Gaussian>Parameters
| Type | Name | Description | 
|---|---|---|
| IndexOfMaximumBuffer | Buffer | Buffer  | 
| GaussianList | to_list | Previous outgoing message to  | 
| Int32 | IndexOfMaximumDouble | Constant value for  | 
Returns
| Type | Description | 
|---|---|
| GaussianList | The outgoing EP message to the  | 
Type Parameters
| Name | Description | 
|---|---|
| GaussianList | The type of an incoming message from  | 
Remarks
The outgoing message is the factor viewed as a function of list conditioned on the given values.
LogAverageFactor<GaussianList>(IndexOfMaximumBuffer, GaussianList, Int32)
Evidence message for EP.
Declaration
public static double LogAverageFactor<GaussianList>(IndexOfMaximumBuffer Buffer, GaussianList list, int IndexOfMaximumDouble)
    where GaussianList : IList<Gaussian>Parameters
| Type | Name | Description | 
|---|---|---|
| IndexOfMaximumBuffer | Buffer | Buffer  | 
| GaussianList | list | Incoming message from  | 
| Int32 | IndexOfMaximumDouble | Constant value for  | 
Returns
| Type | Description | 
|---|---|
| Double | Logarithm of the factor's average value across the given argument distributions. | 
Type Parameters
| Name | Description | 
|---|---|
| GaussianList | The type of an incoming message from  | 
Remarks
The formula for the result is log(sum_(list) p(list) factor(indexOfMaximumDouble,list)).
LogEvidenceRatio<GaussianList>(IndexOfMaximumBuffer, GaussianList, Int32)
Evidence message for EP.
Declaration
public static double LogEvidenceRatio<GaussianList>(IndexOfMaximumBuffer Buffer, GaussianList list, int IndexOfMaximumDouble)
    where GaussianList : IList<Gaussian>Parameters
| Type | Name | Description | 
|---|---|---|
| IndexOfMaximumBuffer | Buffer | Buffer  | 
| GaussianList | list | Incoming message from  | 
| Int32 | IndexOfMaximumDouble | Constant value for  | 
Returns
| Type | Description | 
|---|---|
| Double | Logarithm of the factor's contribution the EP model evidence. | 
Type Parameters
| Name | Description | 
|---|---|
| GaussianList | The type of an incoming message from  | 
Remarks
The formula for the result is log(sum_(list) p(list) factor(indexOfMaximumDouble,list)). Adding up these values across all factors and variables gives the log-evidence estimate for EP.