Class GaussianOp
Provides outgoing messages for the following factors:
, given random arguments to the function.Inherited Members
Namespace: Microsoft.ML.Probabilistic.Factors
Assembly: Microsoft.ML.Probabilistic.dll
Syntax
[FactorMethod(typeof(Gaussian), "Sample", new Type[]{typeof(double), typeof(double)}, Default = true)]
[FactorMethod(new string[]{"sample", "mean", "precision"}, typeof(Factor), "Gaussian", new Type[]{}, Default = true)]
[Quality(QualityBand.Mature)]
public class GaussianOp : GaussianOpBase
Fields
ForceProper
Static flag to force a proper distribution
Declaration
public static bool ForceProper
Field Value
Type | Description |
---|---|
Boolean |
modified
Declaration
public static bool modified
Field Value
Type | Description |
---|---|
Boolean |
QuadratureNodeCount
Number of quadrature nodes to use for computing the messages. Reduce this number to save time in exchange for less accuracy.
Declaration
public static int QuadratureNodeCount
Field Value
Type | Description |
---|---|
Int32 |
Methods
AverageLogFactor(Gaussian, Gaussian, Gamma)
Evidence message for VMP.
Declaration
public static double AverageLogFactor(Gaussian sample, Gaussian mean, Gamma precision)
Parameters
Type | Name | Description |
---|---|---|
Gaussian | sample | Incoming message from |
Gaussian | mean | Incoming message from |
Gamma | precision | Incoming message from |
Returns
Type | Description |
---|---|
Double | Average of the factor's log-value across the given argument distributions. |
Remarks
The formula for the result is sum_(sample,mean,precision) p(sample,mean,precision) log(factor(sample,mean,precision))
. Adding up these values across all factors and variables gives the log-evidence estimate for VMP.
Exceptions
Type | Condition |
---|---|
ImproperMessageException |
|
ImproperMessageException |
|
ImproperMessageException |
|
AverageLogFactor(Gaussian, Gaussian, Double)
Evidence message for VMP.
Declaration
public static double AverageLogFactor(Gaussian sample, Gaussian mean, double precision)
Parameters
Type | Name | Description |
---|---|---|
Gaussian | sample | Incoming message from |
Gaussian | mean | Incoming message from |
Double | precision | Constant value for |
Returns
Type | Description |
---|---|
Double | Average of the factor's log-value across the given argument distributions. |
Remarks
The formula for the result is sum_(sample,mean) p(sample,mean) log(factor(sample,mean,precision))
. Adding up these values across all factors and variables gives the log-evidence estimate for VMP.
Exceptions
Type | Condition |
---|---|
ImproperMessageException |
|
ImproperMessageException |
|
AverageLogFactor(Gaussian, Double, Gamma)
Evidence message for VMP.
Declaration
public static double AverageLogFactor(Gaussian sample, double mean, Gamma precision)
Parameters
Type | Name | Description |
---|---|---|
Gaussian | sample | Incoming message from |
Double | mean | Constant value for |
Gamma | precision | Incoming message from |
Returns
Type | Description |
---|---|
Double | Average of the factor's log-value across the given argument distributions. |
Remarks
The formula for the result is sum_(sample,precision) p(sample,precision) log(factor(sample,mean,precision))
. Adding up these values across all factors and variables gives the log-evidence estimate for VMP.
Exceptions
Type | Condition |
---|---|
ImproperMessageException |
|
ImproperMessageException |
|
AverageLogFactor(Gaussian, Double, Double)
Evidence message for VMP.
Declaration
public static double AverageLogFactor(Gaussian sample, double mean, double precision)
Parameters
Type | Name | Description |
---|---|---|
Gaussian | sample | Incoming message from |
Double | mean | Constant value for |
Double | precision | Constant value for |
Returns
Type | Description |
---|---|
Double | Average of the factor's log-value across the given argument distributions. |
Remarks
The formula for the result is sum_(sample) p(sample) log(factor(sample,mean,precision))
. Adding up these values across all factors and variables gives the log-evidence estimate for VMP.
Exceptions
Type | Condition |
---|---|
ImproperMessageException |
|
AverageLogFactor(Double, Gaussian, Gamma)
Evidence message for VMP.
Declaration
public static double AverageLogFactor(double sample, Gaussian mean, Gamma precision)
Parameters
Type | Name | Description |
---|---|---|
Double | sample | Constant value for |
Gaussian | mean | Incoming message from |
Gamma | precision | Incoming message from |
Returns
Type | Description |
---|---|
Double | Average of the factor's log-value across the given argument distributions. |
Remarks
The formula for the result is sum_(mean,precision) p(mean,precision) log(factor(sample,mean,precision))
. Adding up these values across all factors and variables gives the log-evidence estimate for VMP.
Exceptions
Type | Condition |
---|---|
ImproperMessageException |
|
ImproperMessageException |
|
AverageLogFactor(Double, Gaussian, Double)
Evidence message for VMP.
Declaration
public static double AverageLogFactor(double sample, Gaussian mean, double precision)
Parameters
Type | Name | Description |
---|---|---|
Double | sample | Constant value for |
Gaussian | mean | Incoming message from |
Double | precision | Constant value for |
Returns
Type | Description |
---|---|
Double | Average of the factor's log-value across the given argument distributions. |
Remarks
The formula for the result is sum_(mean) p(mean) log(factor(sample,mean,precision))
. Adding up these values across all factors and variables gives the log-evidence estimate for VMP.
Exceptions
Type | Condition |
---|---|
ImproperMessageException |
|
AverageLogFactor(Double, Double, Gamma)
Evidence message for VMP.
Declaration
public static double AverageLogFactor(double sample, double mean, Gamma precision)
Parameters
Type | Name | Description |
---|---|---|
Double | sample | Constant value for |
Double | mean | Constant value for |
Gamma | precision | Incoming message from |
Returns
Type | Description |
---|---|
Double | Average of the factor's log-value across the given argument distributions. |
Remarks
The formula for the result is sum_(precision) p(precision) log(factor(sample,mean,precision))
. Adding up these values across all factors and variables gives the log-evidence estimate for VMP.
Exceptions
Type | Condition |
---|---|
ImproperMessageException |
|
AverageLogFactor(Double, Double, Double)
Evidence message for VMP.
Declaration
public static double AverageLogFactor(double sample, double mean, double precision)
Parameters
Type | Name | Description |
---|---|---|
Double | sample | Constant value for |
Double | mean | Constant value for |
Double | precision | Constant value for |
Returns
Type | Description |
---|---|
Double | Average of the factor's log-value across the given argument distributions. |
Remarks
The formula for the result is log(factor(sample,mean,precision))
. Adding up these values across all factors and variables gives the log-evidence estimate for VMP.
GammaFromAlphaBeta(Gamma, Double, Double, Boolean)
Gamma message computed directly from prior and expected derivatives of factor
Declaration
public static Gamma GammaFromAlphaBeta(Gamma prior, double alpha, double beta, bool forceProper)
Parameters
Type | Name | Description |
---|---|---|
Gamma | prior | |
Double | alpha | Exf'/Ef = -b dlogZ/db |
Double | beta | (Exf' + Ex^2f'')/Ef - alpha^2 = -b dalpha/db |
Boolean | forceProper |
Returns
Type | Description |
---|---|
Gamma |
GaussianFromAlphaBeta(Gaussian, Double, Double, Boolean)
Compute an EP message
Declaration
public static Gaussian GaussianFromAlphaBeta(Gaussian prior, double alpha, double beta, bool forceProper)
Parameters
Type | Name | Description |
---|---|---|
Gaussian | prior | |
Double | alpha | dlogZ/dm0 |
Double | beta | ddlogZ/dm0^2 |
Boolean | forceProper |
Returns
Type | Description |
---|---|
Gaussian |
LogAverageFactor(Gaussian, Gaussian, Gamma, Gamma)
Evidence message for EP.
Declaration
public static double LogAverageFactor(Gaussian sample, Gaussian mean, Gamma precision, Gamma to_precision)
Parameters
Type | Name | Description |
---|---|---|
Gaussian | sample | Incoming message from |
Gaussian | mean | Incoming message from |
Gamma | precision | Incoming message from |
Gamma | to_precision | Previous outgoing message to |
Returns
Type | Description |
---|---|
Double | Logarithm of the factor's average value across the given argument distributions. |
Remarks
The formula for the result is log(sum_(sample,mean,precision) p(sample,mean,precision) factor(sample,mean,precision))
.
Exceptions
Type | Condition |
---|---|
ImproperMessageException |
|
ImproperMessageException |
|
ImproperMessageException |
|
LogAverageFactor(Gaussian, Double, Gamma, Gamma)
Evidence message for EP.
Declaration
public static double LogAverageFactor(Gaussian sample, double mean, Gamma precision, Gamma to_precision)
Parameters
Type | Name | Description |
---|---|---|
Gaussian | sample | Incoming message from |
Double | mean | Constant value for |
Gamma | precision | Incoming message from |
Gamma | to_precision | Previous outgoing message to |
Returns
Type | Description |
---|---|
Double | Logarithm of the factor's average value across the given argument distributions. |
Remarks
The formula for the result is log(sum_(sample,precision) p(sample,precision) factor(sample,mean,precision))
.
Exceptions
Type | Condition |
---|---|
ImproperMessageException |
|
ImproperMessageException |
|
LogAverageFactor(Double, Gaussian, Gamma, Gamma)
Evidence message for EP.
Declaration
public static double LogAverageFactor(double sample, Gaussian mean, Gamma precision, Gamma to_precision)
Parameters
Type | Name | Description |
---|---|---|
Double | sample | Constant value for |
Gaussian | mean | Incoming message from |
Gamma | precision | Incoming message from |
Gamma | to_precision | Previous outgoing message to |
Returns
Type | Description |
---|---|
Double | Logarithm of the factor's average value across the given argument distributions. |
Remarks
The formula for the result is log(sum_(mean,precision) p(mean,precision) factor(sample,mean,precision))
.
Exceptions
Type | Condition |
---|---|
ImproperMessageException |
|
ImproperMessageException |
|
LogAverageFactor_slow(Gaussian, Gaussian, Gamma)
Declaration
public static double LogAverageFactor_slow(Gaussian sample, Gaussian mean, Gamma precision)
Parameters
Type | Name | Description |
---|---|---|
Gaussian | sample | |
Gaussian | mean | |
Gamma | precision |
Returns
Type | Description |
---|---|
Double |
LogEvidenceRatio(Gaussian, Gaussian, Gamma, Gaussian, Gamma)
Evidence message for EP.
Declaration
public static double LogEvidenceRatio(Gaussian sample, Gaussian mean, Gamma precision, Gaussian to_sample, Gamma to_precision)
Parameters
Type | Name | Description |
---|---|---|
Gaussian | sample | Incoming message from |
Gaussian | mean | Incoming message from |
Gamma | precision | Incoming message from |
Gaussian | to_sample | Outgoing message to |
Gamma | to_precision | Previous outgoing message to |
Returns
Type | Description |
---|---|
Double | Logarithm of the factor's contribution the EP model evidence. |
Remarks
The formula for the result is log(sum_(sample,mean,precision) p(sample,mean,precision) factor(sample,mean,precision) / sum_sample p(sample) messageTo(sample))
. Adding up these values across all factors and variables gives the log-evidence estimate for EP.
Exceptions
Type | Condition |
---|---|
ImproperMessageException |
|
ImproperMessageException |
|
ImproperMessageException |
|
LogEvidenceRatio(Gaussian, Double, Gamma, Gaussian, Gamma)
Evidence message for EP.
Declaration
public static double LogEvidenceRatio(Gaussian sample, double mean, Gamma precision, Gaussian to_sample, Gamma to_precision)
Parameters
Type | Name | Description |
---|---|---|
Gaussian | sample | Incoming message from |
Double | mean | Constant value for |
Gamma | precision | Incoming message from |
Gaussian | to_sample | Outgoing message to |
Gamma | to_precision | Previous outgoing message to |
Returns
Type | Description |
---|---|
Double | Logarithm of the factor's contribution the EP model evidence. |
Remarks
The formula for the result is log(sum_(sample,precision) p(sample,precision) factor(sample,mean,precision) / sum_sample p(sample) messageTo(sample))
. Adding up these values across all factors and variables gives the log-evidence estimate for EP.
Exceptions
Type | Condition |
---|---|
ImproperMessageException |
|
ImproperMessageException |
|
LogEvidenceRatio(Double, Gaussian, Gamma, Gamma)
Evidence message for EP.
Declaration
public static double LogEvidenceRatio(double sample, Gaussian mean, Gamma precision, Gamma to_precision)
Parameters
Type | Name | Description |
---|---|---|
Double | sample | Constant value for |
Gaussian | mean | Incoming message from |
Gamma | precision | Incoming message from |
Gamma | to_precision | Previous outgoing message to |
Returns
Type | Description |
---|---|
Double | Logarithm of the factor's contribution the EP model evidence. |
Remarks
The formula for the result is log(sum_(mean,precision) p(mean,precision) factor(sample,mean,precision))
. Adding up these values across all factors and variables gives the log-evidence estimate for EP.
Exceptions
Type | Condition |
---|---|
ImproperMessageException |
|
ImproperMessageException |
|
LogFactorValue(Double, Double, Double)
Evidence message for Gibbs.
Declaration
public static double LogFactorValue(double sample, double mean, double precision)
Parameters
Type | Name | Description |
---|---|---|
Double | sample | Constant value for |
Double | mean | Constant value for |
Double | precision | Constant value for |
Returns
Type | Description |
---|---|
Double | Logarithm of the factor's value at the given arguments. |
Remarks
MeanAverageConditional(Gaussian, Gaussian, Gamma, Gamma)
EP message to mean
.
Declaration
public static Gaussian MeanAverageConditional(Gaussian sample, Gaussian mean, Gamma precision, Gamma to_precision)
Parameters
Type | Name | Description |
---|---|---|
Gaussian | sample | Incoming message from |
Gaussian | mean | Incoming message from |
Gamma | precision | Incoming message from |
Gamma | to_precision | Previous outgoing message to |
Returns
Type | Description |
---|---|
Gaussian | The outgoing EP message to the |
Remarks
The outgoing message is a distribution matching the moments of mean
as the random arguments are varied. The formula is proj[p(mean) sum_(sample,precision) p(sample,precision) factor(sample,mean,precision)]/p(mean)
.
Exceptions
Type | Condition |
---|---|
ImproperMessageException |
|
ImproperMessageException |
|
MeanAverageConditional(Double, Gaussian, Gamma, Gamma)
EP message to mean
.
Declaration
public static Gaussian MeanAverageConditional(double sample, Gaussian mean, Gamma precision, Gamma to_precision)
Parameters
Type | Name | Description |
---|---|---|
Double | sample | Constant value for |
Gaussian | mean | Incoming message from |
Gamma | precision | Incoming message from |
Gamma | to_precision | Previous outgoing message to |
Returns
Type | Description |
---|---|
Gaussian | The outgoing EP message to the |
Remarks
The outgoing message is a distribution matching the moments of mean
as the random arguments are varied. The formula is proj[p(mean) sum_(precision) p(precision) factor(sample,mean,precision)]/p(mean)
.
Exceptions
Type | Condition |
---|---|
ImproperMessageException |
|
MeanAverageConditional(Double, Double, TruncatedGaussian)
EP message to mean
.
Declaration
public static TruncatedGaussian MeanAverageConditional(double sample, double precision, TruncatedGaussian result)
Parameters
Type | Name | Description |
---|---|---|
Double | sample | Constant value for |
Double | precision | Constant value for |
TruncatedGaussian | result | Modified to contain the outgoing message. |
Returns
Type | Description |
---|---|
TruncatedGaussian |
|
Remarks
The outgoing message is the factor viewed as a function of mean
conditioned on the given values.
MeanAverageConditional_slow(Gaussian, Gaussian, Gamma)
Declaration
public static Gaussian MeanAverageConditional_slow(Gaussian sample, Gaussian mean, Gamma precision)
Parameters
Type | Name | Description |
---|---|---|
Gaussian | sample | |
Gaussian | mean | |
Gamma | precision |
Returns
Type | Description |
---|---|
Gaussian |
MeanAverageLogarithm(Gaussian, Gamma)
VMP message to mean
.
Declaration
public static Gaussian MeanAverageLogarithm(Gaussian sample, Gamma precision)
Parameters
Type | Name | Description |
---|---|---|
Gaussian | sample | Incoming message from |
Gamma | precision | Incoming message from |
Returns
Type | Description |
---|---|
Gaussian | The outgoing VMP message to the |
Remarks
The outgoing message is the exponential of the average log-factor value, where the average is over all arguments except mean
. The formula is exp(sum_(sample,precision) p(sample,precision) log(factor(sample,mean,precision)))
.
Exceptions
Type | Condition |
---|---|
ImproperMessageException |
|
ImproperMessageException |
|
MeanAverageLogarithm(Gaussian, Double)
VMP message to mean
.
Declaration
public static Gaussian MeanAverageLogarithm(Gaussian sample, double precision)
Parameters
Type | Name | Description |
---|---|---|
Gaussian | sample | Incoming message from |
Double | precision | Constant value for |
Returns
Type | Description |
---|---|
Gaussian | The outgoing VMP message to the |
Remarks
The outgoing message is the exponential of the average log-factor value, where the average is over all arguments except mean
. The formula is exp(sum_(sample) p(sample) log(factor(sample,mean,precision)))
.
Exceptions
Type | Condition |
---|---|
ImproperMessageException |
|
MeanAverageLogarithm(Double, Gamma)
VMP message to mean
.
Declaration
public static Gaussian MeanAverageLogarithm(double sample, Gamma precision)
Parameters
Type | Name | Description |
---|---|---|
Double | sample | Constant value for |
Gamma | precision | Incoming message from |
Returns
Type | Description |
---|---|
Gaussian | The outgoing VMP message to the |
Remarks
The outgoing message is the exponential of the average log-factor value, where the average is over all arguments except mean
. The formula is exp(sum_(precision) p(precision) log(factor(sample,mean,precision)))
.
Exceptions
Type | Condition |
---|---|
ImproperMessageException |
|
MeanAverageLogarithm(Double, Double)
VMP message to mean
.
Declaration
public static Gaussian MeanAverageLogarithm(double sample, double precision)
Parameters
Type | Name | Description |
---|---|---|
Double | sample | Constant value for |
Double | precision | Constant value for |
Returns
Type | Description |
---|---|
Gaussian | The outgoing VMP message to the |
Remarks
The outgoing message is the factor viewed as a function of mean
conditioned on the given values.
PrecisionAverageConditional(Gaussian, Gaussian, Gamma)
EP message to precision
.
Declaration
public static Gamma PrecisionAverageConditional(Gaussian sample, Gaussian mean, Gamma precision)
Parameters
Type | Name | Description |
---|---|---|
Gaussian | sample | Incoming message from |
Gaussian | mean | Incoming message from |
Gamma | precision | Incoming message from |
Returns
Type | Description |
---|---|
Gamma | The outgoing EP message to the |
Remarks
The outgoing message is a distribution matching the moments of precision
as the random arguments are varied. The formula is proj[p(precision) sum_(sample,mean) p(sample,mean) factor(sample,mean,precision)]/p(precision)
.
Exceptions
Type | Condition |
---|---|
ImproperMessageException |
|
ImproperMessageException |
|
ImproperMessageException |
|
PrecisionAverageConditional_Point(Double, Double, Double)
Declaration
public static Gamma PrecisionAverageConditional_Point(double ym, double yv, double precision)
Parameters
Type | Name | Description |
---|---|---|
Double | ym | |
Double | yv | |
Double | precision |
Returns
Type | Description |
---|---|
Gamma |
PrecisionAverageConditional_slow(Gaussian, Gaussian, Gamma)
Declaration
public static Gamma PrecisionAverageConditional_slow(Gaussian sample, Gaussian mean, Gamma precision)
Parameters
Type | Name | Description |
---|---|---|
Gaussian | sample | |
Gaussian | mean | |
Gamma | precision |
Returns
Type | Description |
---|---|
Gamma |
PrecisionAverageLogarithm(Gaussian, Gaussian)
VMP message to precision
.
Declaration
public static Gamma PrecisionAverageLogarithm(Gaussian sample, Gaussian mean)
Parameters
Type | Name | Description |
---|---|---|
Gaussian | sample | Incoming message from |
Gaussian | mean | Incoming message from |
Returns
Type | Description |
---|---|
Gamma | The outgoing VMP message to the |
Remarks
The outgoing message is the exponential of the average log-factor value, where the average is over all arguments except precision
. The formula is exp(sum_(sample,mean) p(sample,mean) log(factor(sample,mean,precision)))
.
Exceptions
Type | Condition |
---|---|
ImproperMessageException |
|
ImproperMessageException |
|
PrecisionAverageLogarithm(Gaussian, Double)
VMP message to precision
.
Declaration
public static Gamma PrecisionAverageLogarithm(Gaussian sample, double mean)
Parameters
Type | Name | Description |
---|---|---|
Gaussian | sample | Incoming message from |
Double | mean | Constant value for |
Returns
Type | Description |
---|---|
Gamma | The outgoing VMP message to the |
Remarks
The outgoing message is the exponential of the average log-factor value, where the average is over all arguments except precision
. The formula is exp(sum_(sample) p(sample) log(factor(sample,mean,precision)))
.
Exceptions
Type | Condition |
---|---|
ImproperMessageException |
|
PrecisionAverageLogarithm(Double, Gaussian)
VMP message to precision
.
Declaration
public static Gamma PrecisionAverageLogarithm(double sample, Gaussian mean)
Parameters
Type | Name | Description |
---|---|---|
Double | sample | Constant value for |
Gaussian | mean | Incoming message from |
Returns
Type | Description |
---|---|
Gamma | The outgoing VMP message to the |
Remarks
The outgoing message is the exponential of the average log-factor value, where the average is over all arguments except precision
. The formula is exp(sum_(mean) p(mean) log(factor(sample,mean,precision)))
.
Exceptions
Type | Condition |
---|---|
ImproperMessageException |
|
PrecisionAverageLogarithm(Double, Double)
VMP message to precision
.
Declaration
public static Gamma PrecisionAverageLogarithm(double sample, double mean)
Parameters
Type | Name | Description |
---|---|---|
Double | sample | Constant value for |
Double | mean | Constant value for |
Returns
Type | Description |
---|---|
Gamma | The outgoing VMP message to the |
Remarks
The outgoing message is the factor viewed as a function of precision
conditioned on the given values.
QuadratureNodesAndWeights(Gamma, Double[], Double[])
Quadrature nodes for Gamma expectations
Declaration
public static void QuadratureNodesAndWeights(Gamma precision, double[] nodes, double[] logWeights)
Parameters
Type | Name | Description |
---|---|---|
Gamma | precision | 'precision' message |
Double[] | nodes | Place to put the nodes |
Double[] | logWeights | Place to put the log-weights |
SampleAverageConditional(Gaussian, Gaussian, Gamma, Gamma)
EP message to sample
.
Declaration
public static Gaussian SampleAverageConditional(Gaussian sample, Gaussian mean, Gamma precision, Gamma to_precision)
Parameters
Type | Name | Description |
---|---|---|
Gaussian | sample | Incoming message from |
Gaussian | mean | Incoming message from |
Gamma | precision | Incoming message from |
Gamma | to_precision | Previous outgoing message to |
Returns
Type | Description |
---|---|
Gaussian | The outgoing EP message to the |
Remarks
The outgoing message is a distribution matching the moments of sample
as the random arguments are varied. The formula is proj[p(sample) sum_(mean,precision) p(mean,precision) factor(sample,mean,precision)]/p(sample)
.
Exceptions
Type | Condition |
---|---|
ImproperMessageException |
|
ImproperMessageException |
|
SampleAverageConditional(Gaussian, Double, Gamma, Gamma)
EP message to sample
.
Declaration
public static Gaussian SampleAverageConditional(Gaussian sample, double mean, Gamma precision, Gamma to_precision)
Parameters
Type | Name | Description |
---|---|---|
Gaussian | sample | Incoming message from |
Double | mean | Constant value for |
Gamma | precision | Incoming message from |
Gamma | to_precision | Previous outgoing message to |
Returns
Type | Description |
---|---|
Gaussian | The outgoing EP message to the |
Remarks
The outgoing message is a distribution matching the moments of sample
as the random arguments are varied. The formula is proj[p(sample) sum_(precision) p(precision) factor(sample,mean,precision)]/p(sample)
.
Exceptions
Type | Condition |
---|---|
ImproperMessageException |
|
SampleAverageConditional(Double, Double, TruncatedGaussian)
EP message to sample
.
Declaration
public static TruncatedGaussian SampleAverageConditional(double mean, double precision, TruncatedGaussian result)
Parameters
Type | Name | Description |
---|---|---|
Double | mean | Constant value for |
Double | precision | Constant value for |
TruncatedGaussian | result | Modified to contain the outgoing message. |
Returns
Type | Description |
---|---|
TruncatedGaussian |
|
Remarks
The outgoing message is the factor viewed as a function of sample
conditioned on the given values.
SampleAverageConditional_slow(Gaussian, Gaussian, Gamma)
Declaration
public static Gaussian SampleAverageConditional_slow(Gaussian sample, Gaussian mean, Gamma precision)
Parameters
Type | Name | Description |
---|---|---|
Gaussian | sample | |
Gaussian | mean | |
Gamma | precision |
Returns
Type | Description |
---|---|
Gaussian |
SampleAverageConditionalInit()
Declaration
public static Gaussian SampleAverageConditionalInit()
Returns
Type | Description |
---|---|
Gaussian |
Remarks
SampleAverageLogarithm(Gaussian, Gamma)
VMP message to sample
.
Declaration
public static Gaussian SampleAverageLogarithm(Gaussian mean, Gamma precision)
Parameters
Type | Name | Description |
---|---|---|
Gaussian | mean | Incoming message from |
Gamma | precision | Incoming message from |
Returns
Type | Description |
---|---|
Gaussian | The outgoing VMP message to the |
Remarks
The outgoing message is the exponential of the average log-factor value, where the average is over all arguments except sample
. The formula is exp(sum_(mean,precision) p(mean,precision) log(factor(sample,mean,precision)))
.
Exceptions
Type | Condition |
---|---|
ImproperMessageException |
|
ImproperMessageException |
|
SampleAverageLogarithm(Gaussian, Double)
VMP message to sample
.
Declaration
public static Gaussian SampleAverageLogarithm(Gaussian mean, double precision)
Parameters
Type | Name | Description |
---|---|---|
Gaussian | mean | Incoming message from |
Double | precision | Constant value for |
Returns
Type | Description |
---|---|
Gaussian | The outgoing VMP message to the |
Remarks
The outgoing message is the exponential of the average log-factor value, where the average is over all arguments except sample
. The formula is exp(sum_(mean) p(mean) log(factor(sample,mean,precision)))
.
Exceptions
Type | Condition |
---|---|
ImproperMessageException |
|
SampleAverageLogarithm(Double, Gamma)
VMP message to sample
.
Declaration
public static Gaussian SampleAverageLogarithm(double mean, Gamma precision)
Parameters
Type | Name | Description |
---|---|---|
Double | mean | Constant value for |
Gamma | precision | Incoming message from |
Returns
Type | Description |
---|---|
Gaussian | The outgoing VMP message to the |
Remarks
The outgoing message is the exponential of the average log-factor value, where the average is over all arguments except sample
. The formula is exp(sum_(precision) p(precision) log(factor(sample,mean,precision)))
.
Exceptions
Type | Condition |
---|---|
ImproperMessageException |
|
SampleAverageLogarithm(Double, Double)
VMP message to sample
.
Declaration
public static Gaussian SampleAverageLogarithm(double mean, double precision)
Parameters
Type | Name | Description |
---|---|---|
Double | mean | Constant value for |
Double | precision | Constant value for |
Returns
Type | Description |
---|---|
Gaussian | The outgoing VMP message to the |
Remarks
The outgoing message is the factor viewed as a function of sample
conditioned on the given values.