Class GaussianFromMeanAndVarianceOp_PointVariance
This class defines specializations for the case where variance is a point mass. These methods have fewer inputs, allowing more efficient schedules.
Inherited Members
Namespace: Microsoft.ML.Probabilistic.Factors
Assembly: Microsoft.ML.Probabilistic.dll
Syntax
[FactorMethod(typeof(Factor), "GaussianFromMeanAndVariance", new Type[]{}, Default = false)]
[Quality(QualityBand.Preview)]
public static class GaussianFromMeanAndVarianceOp_PointVariance
Methods
LogEvidenceRatio(Gaussian, Gaussian, Gamma)
Evidence message for EP.
Declaration
public static double LogEvidenceRatio(Gaussian sample, Gaussian mean, Gamma variance)
Parameters
Type | Name | Description |
---|---|---|
Gaussian | sample | Incoming message from |
Gaussian | mean | Incoming message from |
Gamma | variance | Incoming message from |
Returns
Type | Description |
---|---|
Double | Logarithm of the factor's contribution the EP model evidence. |
Remarks
The formula for the result is log(sum_(sample,mean,variance) p(sample,mean,variance) factor(sample,mean,variance) / sum_sample p(sample) messageTo(sample))
. Adding up these values across all factors and variables gives the log-evidence estimate for EP.
Exceptions
Type | Condition |
---|---|
ImproperMessageException |
|
ImproperMessageException |
|
ImproperMessageException |
|
LogEvidenceRatio(Double, Gaussian, Gamma)
Evidence message for EP.
Declaration
public static double LogEvidenceRatio(double sample, Gaussian mean, Gamma variance)
Parameters
Type | Name | Description |
---|---|---|
Double | sample | Constant value for |
Gaussian | mean | Incoming message from |
Gamma | variance | Incoming message from |
Returns
Type | Description |
---|---|
Double | Logarithm of the factor's contribution the EP model evidence. |
Remarks
The formula for the result is log(sum_(mean,variance) p(mean,variance) factor(sample,mean,variance))
. Adding up these values across all factors and variables gives the log-evidence estimate for EP.
Exceptions
Type | Condition |
---|---|
ImproperMessageException |
|
ImproperMessageException |
|
MeanAverageConditional(Gaussian, Gamma)
EP message to mean
.
Declaration
public static Gaussian MeanAverageConditional(Gaussian sample, Gamma variance)
Parameters
Type | Name | Description |
---|---|---|
Gaussian | sample | Incoming message from |
Gamma | variance | Incoming message from |
Returns
Type | Description |
---|---|
Gaussian | The outgoing EP message to the |
Remarks
The outgoing message is a distribution matching the moments of mean
as the random arguments are varied. The formula is proj[p(mean) sum_(sample,variance) p(sample,variance) factor(sample,mean,variance)]/p(mean)
.
Exceptions
Type | Condition |
---|---|
ImproperMessageException |
|
ImproperMessageException |
|
SampleAverageConditional(Gaussian, Gamma)
EP message to sample
.
Declaration
public static Gaussian SampleAverageConditional(Gaussian mean, Gamma variance)
Parameters
Type | Name | Description |
---|---|---|
Gaussian | mean | Incoming message from |
Gamma | variance | Incoming message from |
Returns
Type | Description |
---|---|
Gaussian | The outgoing EP message to the |
Remarks
The outgoing message is a distribution matching the moments of sample
as the random arguments are varied. The formula is proj[p(sample) sum_(mean,variance) p(mean,variance) factor(sample,mean,variance)]/p(sample)
.
Exceptions
Type | Condition |
---|---|
ImproperMessageException |
|
ImproperMessageException |
|
VarianceAverageConditional(Gaussian, Gaussian, Gamma)
EP message to variance
.
Declaration
public static Gamma VarianceAverageConditional(Gaussian sample, Gaussian mean, Gamma variance)
Parameters
Type | Name | Description |
---|---|---|
Gaussian | sample | Incoming message from |
Gaussian | mean | Incoming message from |
Gamma | variance | Incoming message from |
Returns
Type | Description |
---|---|
Gamma | The outgoing EP message to the |
Remarks
The outgoing message is a distribution matching the moments of variance
as the random arguments are varied. The formula is proj[p(variance) sum_(sample,mean) p(sample,mean) factor(sample,mean,variance)]/p(variance)
.
Exceptions
Type | Condition |
---|---|
ImproperMessageException |
|
ImproperMessageException |
|
ImproperMessageException |
|