Search Results for

    Show / Hide Table of Contents

    Class GaussianFromMeanAndVarianceOp_PointVariance

    This class defines specializations for the case where variance is a point mass. These methods have fewer inputs, allowing more efficient schedules.

    Inheritance
    Object
    GaussianFromMeanAndVarianceOp_PointVariance
    Inherited Members
    Object.Equals(Object)
    Object.Equals(Object, Object)
    Object.GetHashCode()
    Object.GetType()
    Object.MemberwiseClone()
    Object.ReferenceEquals(Object, Object)
    Object.ToString()
    Namespace: Microsoft.ML.Probabilistic.Factors
    Assembly: Microsoft.ML.Probabilistic.dll
    Syntax
    [FactorMethod(typeof(Factor), "GaussianFromMeanAndVariance", new Type[]{}, Default = false)]
    [Quality(QualityBand.Preview)]
    public static class GaussianFromMeanAndVarianceOp_PointVariance

    Methods

    LogEvidenceRatio(Gaussian, Gaussian, Gamma)

    Evidence message for EP.

    Declaration
    public static double LogEvidenceRatio(Gaussian sample, Gaussian mean, Gamma variance)
    Parameters
    Type Name Description
    Gaussian sample

    Incoming message from sample. Must be a proper distribution. If uniform, the result will be uniform.

    Gaussian mean

    Incoming message from mean. Must be a proper distribution. If uniform, the result will be uniform.

    Gamma variance

    Incoming message from variance. Must be a proper distribution. If uniform, the result will be uniform.

    Returns
    Type Description
    Double

    Logarithm of the factor's contribution the EP model evidence.

    Remarks

    The formula for the result is log(sum_(sample,mean,variance) p(sample,mean,variance) factor(sample,mean,variance) / sum_sample p(sample) messageTo(sample)). Adding up these values across all factors and variables gives the log-evidence estimate for EP.

    Exceptions
    Type Condition
    ImproperMessageException

    sample is not a proper distribution.

    ImproperMessageException

    mean is not a proper distribution.

    ImproperMessageException

    variance is not a proper distribution.

    LogEvidenceRatio(Double, Gaussian, Gamma)

    Evidence message for EP.

    Declaration
    public static double LogEvidenceRatio(double sample, Gaussian mean, Gamma variance)
    Parameters
    Type Name Description
    Double sample

    Constant value for sample.

    Gaussian mean

    Incoming message from mean. Must be a proper distribution. If uniform, the result will be uniform.

    Gamma variance

    Incoming message from variance. Must be a proper distribution. If uniform, the result will be uniform.

    Returns
    Type Description
    Double

    Logarithm of the factor's contribution the EP model evidence.

    Remarks

    The formula for the result is log(sum_(mean,variance) p(mean,variance) factor(sample,mean,variance)). Adding up these values across all factors and variables gives the log-evidence estimate for EP.

    Exceptions
    Type Condition
    ImproperMessageException

    mean is not a proper distribution.

    ImproperMessageException

    variance is not a proper distribution.

    MeanAverageConditional(Gaussian, Gamma)

    EP message to mean.

    Declaration
    public static Gaussian MeanAverageConditional(Gaussian sample, Gamma variance)
    Parameters
    Type Name Description
    Gaussian sample

    Incoming message from sample. Must be a proper distribution. If uniform, the result will be uniform.

    Gamma variance

    Incoming message from variance. Must be a proper distribution. If uniform, the result will be uniform.

    Returns
    Type Description
    Gaussian

    The outgoing EP message to the mean argument.

    Remarks

    The outgoing message is a distribution matching the moments of mean as the random arguments are varied. The formula is proj[p(mean) sum_(sample,variance) p(sample,variance) factor(sample,mean,variance)]/p(mean).

    Exceptions
    Type Condition
    ImproperMessageException

    sample is not a proper distribution.

    ImproperMessageException

    variance is not a proper distribution.

    SampleAverageConditional(Gaussian, Gamma)

    EP message to sample.

    Declaration
    public static Gaussian SampleAverageConditional(Gaussian mean, Gamma variance)
    Parameters
    Type Name Description
    Gaussian mean

    Incoming message from mean. Must be a proper distribution. If uniform, the result will be uniform.

    Gamma variance

    Incoming message from variance. Must be a proper distribution. If uniform, the result will be uniform.

    Returns
    Type Description
    Gaussian

    The outgoing EP message to the sample argument.

    Remarks

    The outgoing message is a distribution matching the moments of sample as the random arguments are varied. The formula is proj[p(sample) sum_(mean,variance) p(mean,variance) factor(sample,mean,variance)]/p(sample).

    Exceptions
    Type Condition
    ImproperMessageException

    mean is not a proper distribution.

    ImproperMessageException

    variance is not a proper distribution.

    VarianceAverageConditional(Gaussian, Gaussian, Gamma)

    EP message to variance.

    Declaration
    public static Gamma VarianceAverageConditional(Gaussian sample, Gaussian mean, Gamma variance)
    Parameters
    Type Name Description
    Gaussian sample

    Incoming message from sample. Must be a proper distribution. If uniform, the result will be uniform.

    Gaussian mean

    Incoming message from mean. Must be a proper distribution. If uniform, the result will be uniform.

    Gamma variance

    Incoming message from variance. Must be a proper distribution. If uniform, the result will be uniform.

    Returns
    Type Description
    Gamma

    The outgoing EP message to the variance argument.

    Remarks

    The outgoing message is a distribution matching the moments of variance as the random arguments are varied. The formula is proj[p(variance) sum_(sample,mean) p(sample,mean) factor(sample,mean,variance)]/p(variance).

    Exceptions
    Type Condition
    ImproperMessageException

    sample is not a proper distribution.

    ImproperMessageException

    mean is not a proper distribution.

    ImproperMessageException

    variance is not a proper distribution.

    In This Article
    Back to top Copyright © .NET Foundation. All rights reserved.