Search Results for

    Show / Hide Table of Contents

    Class GaussianFromMeanAndVarianceOp

    Provides outgoing messages for GaussianFromMeanAndVariance(Double, Double), given random arguments to the function.

    Inheritance
    Object
    GaussianFromMeanAndVarianceOp
    Inherited Members
    Object.Equals(Object)
    Object.Equals(Object, Object)
    Object.GetHashCode()
    Object.GetType()
    Object.MemberwiseClone()
    Object.ReferenceEquals(Object, Object)
    Object.ToString()
    Namespace: Microsoft.ML.Probabilistic.Factors
    Assembly: Microsoft.ML.Probabilistic.dll
    Syntax
    [FactorMethod(typeof(Factor), "GaussianFromMeanAndVariance", new Type[]{})]
    [Quality(QualityBand.Stable)]
    public static class GaussianFromMeanAndVarianceOp

    Fields

    ForceProper

    Declaration
    public static bool ForceProper
    Field Value
    Type Description
    Boolean

    nWeights

    Declaration
    public static int nWeights
    Field Value
    Type Description
    Int32

    Methods

    AverageLogFactor(Gaussian, Gaussian, Double)

    Evidence message for VMP.

    Declaration
    public static double AverageLogFactor(Gaussian sample, Gaussian mean, double variance)
    Parameters
    Type Name Description
    Gaussian sample

    Incoming message from sample. Must be a proper distribution. If uniform, the result will be uniform.

    Gaussian mean

    Incoming message from mean. Must be a proper distribution. If uniform, the result will be uniform.

    Double variance

    Constant value for variance.

    Returns
    Type Description
    Double

    Average of the factor's log-value across the given argument distributions.

    Remarks

    The formula for the result is sum_(sample,mean) p(sample,mean) log(factor(sample,mean,variance)). Adding up these values across all factors and variables gives the log-evidence estimate for VMP.

    Exceptions
    Type Condition
    ImproperMessageException

    sample is not a proper distribution.

    ImproperMessageException

    mean is not a proper distribution.

    AverageLogFactor(Gaussian, Double, Double)

    Evidence message for VMP.

    Declaration
    public static double AverageLogFactor(Gaussian sample, double mean, double variance)
    Parameters
    Type Name Description
    Gaussian sample

    Incoming message from sample. Must be a proper distribution. If uniform, the result will be uniform.

    Double mean

    Constant value for mean.

    Double variance

    Constant value for variance.

    Returns
    Type Description
    Double

    Average of the factor's log-value across the given argument distributions.

    Remarks

    The formula for the result is sum_(sample) p(sample) log(factor(sample,mean,variance)). Adding up these values across all factors and variables gives the log-evidence estimate for VMP.

    Exceptions
    Type Condition
    ImproperMessageException

    sample is not a proper distribution.

    AverageLogFactor(Double, Gaussian, Double)

    Evidence message for VMP.

    Declaration
    public static double AverageLogFactor(double sample, Gaussian mean, double variance)
    Parameters
    Type Name Description
    Double sample

    Constant value for sample.

    Gaussian mean

    Incoming message from mean. Must be a proper distribution. If uniform, the result will be uniform.

    Double variance

    Constant value for variance.

    Returns
    Type Description
    Double

    Average of the factor's log-value across the given argument distributions.

    Remarks

    The formula for the result is sum_(mean) p(mean) log(factor(sample,mean,variance)). Adding up these values across all factors and variables gives the log-evidence estimate for VMP.

    Exceptions
    Type Condition
    ImproperMessageException

    mean is not a proper distribution.

    AverageLogFactor(Double, Double, Double)

    Evidence message for VMP.

    Declaration
    public static double AverageLogFactor(double sample, double mean, double variance)
    Parameters
    Type Name Description
    Double sample

    Constant value for sample.

    Double mean

    Constant value for mean.

    Double variance

    Constant value for variance.

    Returns
    Type Description
    Double

    Average of the factor's log-value across the given argument distributions.

    Remarks

    The formula for the result is log(factor(sample,mean,variance)). Adding up these values across all factors and variables gives the log-evidence estimate for VMP.

    BinomialTransform(Double[])

    Declaration
    public static void BinomialTransform(double[] x)
    Parameters
    Type Name Description
    Double[] x

    InterpolateBesselKMoment(Double, Double[])

    Approximate a moment of VG(x;a) by interpolating its values for integer shapes

    Declaration
    public static double InterpolateBesselKMoment(double a, double[] binomt)
    Parameters
    Type Name Description
    Double a

    The starting integer shape

    Double[] binomt

    The exact moment for integer shapes starting at a

    Returns
    Type Description
    Double

    The interpolated moment

    LaplacianTimesGaussianMoments(Double, Double, out Double, out Double, out Double)

    Compute moments of 0.5*exp(-abs(x))*N(x;m,v)

    Declaration
    public static void LaplacianTimesGaussianMoments(double m, double v, out double logZ, out double mu, out double vu)
    Parameters
    Type Name Description
    Double m
    Double v
    Double logZ
    Double mu
    Double vu

    LogAverageFactor(Gaussian, Gaussian, Gamma)

    Evidence message for EP.

    Declaration
    public static double LogAverageFactor(Gaussian sample, Gaussian mean, Gamma variance)
    Parameters
    Type Name Description
    Gaussian sample

    Incoming message from sample.

    Gaussian mean

    Incoming message from mean.

    Gamma variance

    Incoming message from variance.

    Returns
    Type Description
    Double

    Logarithm of the factor's average value across the given argument distributions.

    Remarks

    The formula for the result is log(sum_(sample,mean,variance) p(sample,mean,variance) factor(sample,mean,variance)).

    LogAverageFactor(Gaussian, Gaussian, Double)

    Evidence message for EP.

    Declaration
    public static double LogAverageFactor(Gaussian sample, Gaussian mean, double variance)
    Parameters
    Type Name Description
    Gaussian sample

    Incoming message from sample. Must be a proper distribution. If uniform, the result will be uniform.

    Gaussian mean

    Incoming message from mean. Must be a proper distribution. If uniform, the result will be uniform.

    Double variance

    Constant value for variance.

    Returns
    Type Description
    Double

    Logarithm of the factor's average value across the given argument distributions.

    Remarks

    The formula for the result is log(sum_(sample,mean) p(sample,mean) factor(sample,mean,variance)).

    Exceptions
    Type Condition
    ImproperMessageException

    sample is not a proper distribution.

    ImproperMessageException

    mean is not a proper distribution.

    LogAverageFactor(Gaussian, Double, Double)

    Evidence message for EP.

    Declaration
    public static double LogAverageFactor(Gaussian sample, double mean, double variance)
    Parameters
    Type Name Description
    Gaussian sample

    Incoming message from sample. Must be a proper distribution. If uniform, the result will be uniform.

    Double mean

    Constant value for mean.

    Double variance

    Constant value for variance.

    Returns
    Type Description
    Double

    Logarithm of the factor's average value across the given argument distributions.

    Remarks

    The formula for the result is log(sum_(sample) p(sample) factor(sample,mean,variance)).

    Exceptions
    Type Condition
    ImproperMessageException

    sample is not a proper distribution.

    LogAverageFactor(Double, Gaussian, Double)

    Evidence message for EP.

    Declaration
    public static double LogAverageFactor(double sample, Gaussian mean, double variance)
    Parameters
    Type Name Description
    Double sample

    Constant value for sample.

    Gaussian mean

    Incoming message from mean. Must be a proper distribution. If uniform, the result will be uniform.

    Double variance

    Constant value for variance.

    Returns
    Type Description
    Double

    Logarithm of the factor's average value across the given argument distributions.

    Remarks

    The formula for the result is log(sum_(mean) p(mean) factor(sample,mean,variance)).

    Exceptions
    Type Condition
    ImproperMessageException

    mean is not a proper distribution.

    LogAverageFactor(Double, Double, Double)

    Evidence message for EP.

    Declaration
    public static double LogAverageFactor(double sample, double mean, double variance)
    Parameters
    Type Name Description
    Double sample

    Constant value for sample.

    Double mean

    Constant value for mean.

    Double variance

    Constant value for variance.

    Returns
    Type Description
    Double

    Logarithm of the factor's average value across the given argument distributions.

    Remarks

    The formula for the result is log(factor(sample,mean,variance)).

    LogEvidenceRatio(Gaussian, Gaussian, Gamma, Gaussian)

    Evidence message for EP.

    Declaration
    [Quality(QualityBand.Experimental)]
    public static double LogEvidenceRatio(Gaussian sample, Gaussian mean, Gamma variance, Gaussian to_sample)
    Parameters
    Type Name Description
    Gaussian sample

    Incoming message from sample.

    Gaussian mean

    Incoming message from mean.

    Gamma variance

    Incoming message from variance.

    Gaussian to_sample

    Previous outgoing message to sample.

    Returns
    Type Description
    Double

    Logarithm of the factor's contribution the EP model evidence.

    Remarks

    The formula for the result is log(sum_(sample,mean,variance) p(sample,mean,variance) factor(sample,mean,variance) / sum_sample p(sample) messageTo(sample)). Adding up these values across all factors and variables gives the log-evidence estimate for EP.

    LogEvidenceRatio(Gaussian, Gaussian, Double)

    Evidence message for EP.

    Declaration
    public static double LogEvidenceRatio(Gaussian sample, Gaussian mean, double variance)
    Parameters
    Type Name Description
    Gaussian sample

    Incoming message from sample.

    Gaussian mean

    Incoming message from mean.

    Double variance

    Constant value for variance.

    Returns
    Type Description
    Double

    Logarithm of the factor's contribution the EP model evidence.

    Remarks

    The formula for the result is log(sum_(sample,mean) p(sample,mean) factor(sample,mean,variance) / sum_sample p(sample) messageTo(sample)). Adding up these values across all factors and variables gives the log-evidence estimate for EP.

    LogEvidenceRatio(Gaussian, Double, Double)

    Evidence message for EP.

    Declaration
    public static double LogEvidenceRatio(Gaussian sample, double mean, double variance)
    Parameters
    Type Name Description
    Gaussian sample

    Incoming message from sample.

    Double mean

    Constant value for mean.

    Double variance

    Constant value for variance.

    Returns
    Type Description
    Double

    Logarithm of the factor's contribution the EP model evidence.

    Remarks

    The formula for the result is log(sum_(sample) p(sample) factor(sample,mean,variance) / sum_sample p(sample) messageTo(sample)). Adding up these values across all factors and variables gives the log-evidence estimate for EP.

    LogEvidenceRatio(Double, Gaussian, Double)

    Evidence message for EP.

    Declaration
    public static double LogEvidenceRatio(double sample, Gaussian mean, double variance)
    Parameters
    Type Name Description
    Double sample

    Constant value for sample.

    Gaussian mean

    Incoming message from mean. Must be a proper distribution. If uniform, the result will be uniform.

    Double variance

    Constant value for variance.

    Returns
    Type Description
    Double

    Logarithm of the factor's contribution the EP model evidence.

    Remarks

    The formula for the result is log(sum_(mean) p(mean) factor(sample,mean,variance)). Adding up these values across all factors and variables gives the log-evidence estimate for EP.

    Exceptions
    Type Condition
    ImproperMessageException

    mean is not a proper distribution.

    LogEvidenceRatio(Double, Double, Double)

    Evidence message for EP.

    Declaration
    public static double LogEvidenceRatio(double sample, double mean, double variance)
    Parameters
    Type Name Description
    Double sample

    Constant value for sample.

    Double mean

    Constant value for mean.

    Double variance

    Constant value for variance.

    Returns
    Type Description
    Double

    Logarithm of the factor's contribution the EP model evidence.

    Remarks

    The formula for the result is log(factor(sample,mean,variance)). Adding up these values across all factors and variables gives the log-evidence estimate for EP.

    MeanAverageConditional(Gaussian, Gaussian, Gamma)

    EP message to mean.

    Declaration
    [Quality(QualityBand.Experimental)]
    public static Gaussian MeanAverageConditional(Gaussian sample, Gaussian mean, Gamma variance)
    Parameters
    Type Name Description
    Gaussian sample

    Incoming message from sample. Must be a proper distribution. If uniform, the result will be uniform.

    Gaussian mean

    Incoming message from mean.

    Gamma variance

    Incoming message from variance. Must be a proper distribution. If uniform, the result will be uniform.

    Returns
    Type Description
    Gaussian

    The outgoing EP message to the mean argument.

    Remarks

    The outgoing message is a distribution matching the moments of mean as the random arguments are varied. The formula is proj[p(mean) sum_(sample,variance) p(sample,variance) factor(sample,mean,variance)]/p(mean).

    Exceptions
    Type Condition
    ImproperMessageException

    sample is not a proper distribution.

    ImproperMessageException

    variance is not a proper distribution.

    MeanAverageConditional(Gaussian, Double)

    EP message to mean.

    Declaration
    public static Gaussian MeanAverageConditional(Gaussian sample, double variance)
    Parameters
    Type Name Description
    Gaussian sample

    Incoming message from sample. Must be a proper distribution. If uniform, the result will be uniform.

    Double variance

    Constant value for variance.

    Returns
    Type Description
    Gaussian

    The outgoing EP message to the mean argument.

    Remarks

    The outgoing message is a distribution matching the moments of mean as the random arguments are varied. The formula is proj[p(mean) sum_(sample) p(sample) factor(sample,mean,variance)]/p(mean).

    Exceptions
    Type Condition
    ImproperMessageException

    sample is not a proper distribution.

    MeanAverageConditional(Double, Gaussian, Gamma)

    EP message to mean.

    Declaration
    [Quality(QualityBand.Experimental)]
    public static Gaussian MeanAverageConditional(double sample, Gaussian mean, Gamma variance)
    Parameters
    Type Name Description
    Double sample

    Constant value for sample.

    Gaussian mean

    Incoming message from mean.

    Gamma variance

    Incoming message from variance. Must be a proper distribution. If uniform, the result will be uniform.

    Returns
    Type Description
    Gaussian

    The outgoing EP message to the mean argument.

    Remarks

    The outgoing message is a distribution matching the moments of mean as the random arguments are varied. The formula is proj[p(mean) sum_(variance) p(variance) factor(sample,mean,variance)]/p(mean).

    Exceptions
    Type Condition
    ImproperMessageException

    variance is not a proper distribution.

    MeanAverageConditional(Double, Double)

    EP message to mean.

    Declaration
    public static Gaussian MeanAverageConditional(double sample, double variance)
    Parameters
    Type Name Description
    Double sample

    Constant value for sample.

    Double variance

    Constant value for variance.

    Returns
    Type Description
    Gaussian

    The outgoing EP message to the mean argument.

    Remarks

    The outgoing message is the factor viewed as a function of mean conditioned on the given values.

    MeanAverageConditional(Double, Double, TruncatedGaussian)

    EP message to mean.

    Declaration
    public static TruncatedGaussian MeanAverageConditional(double sample, double variance, TruncatedGaussian result)
    Parameters
    Type Name Description
    Double sample

    Constant value for sample.

    Double variance

    Constant value for variance.

    TruncatedGaussian result

    Modified to contain the outgoing message.

    Returns
    Type Description
    TruncatedGaussian

    result

    Remarks

    The outgoing message is the factor viewed as a function of mean conditioned on the given values.

    MeanAverageLogarithm(Gaussian, Double)

    VMP message to mean.

    Declaration
    public static Gaussian MeanAverageLogarithm(Gaussian sample, double variance)
    Parameters
    Type Name Description
    Gaussian sample

    Incoming message from sample. Must be a proper distribution. If uniform, the result will be uniform.

    Double variance

    Constant value for variance.

    Returns
    Type Description
    Gaussian

    The outgoing VMP message to the mean argument.

    Remarks

    The outgoing message is the exponential of the average log-factor value, where the average is over all arguments except mean. The formula is exp(sum_(sample) p(sample) log(factor(sample,mean,variance))).

    Exceptions
    Type Condition
    ImproperMessageException

    sample is not a proper distribution.

    MeanAverageLogarithm(Double, Double)

    VMP message to mean.

    Declaration
    public static Gaussian MeanAverageLogarithm(double sample, double variance)
    Parameters
    Type Name Description
    Double sample

    Constant value for sample.

    Double variance

    Constant value for variance.

    Returns
    Type Description
    Gaussian

    The outgoing VMP message to the mean argument.

    Remarks

    The outgoing message is the factor viewed as a function of mean conditioned on the given values.

    NormalCdfMoment(Int32, Double, Double)

    Declaration
    public static double NormalCdfMoment(int n, double m, double v)
    Parameters
    Type Name Description
    Int32 n
    Double m
    Double v
    Returns
    Type Description
    Double

    NormalCdfMomentRatios(Int32, Double, Double)

    Computes int_0^Inf x^n N(x;m,v) dx / N(m/sqrt(v);0,1)

    Declaration
    public static double[] NormalCdfMomentRatios(int nMax, double m, double v)
    Parameters
    Type Name Description
    Int32 nMax
    Double m
    Double v
    Returns
    Type Description
    Double[]

    NormalCdfMomentRecurrence(Int32, Double, Double)

    Declaration
    public static double NormalCdfMomentRecurrence(int n, double m, double v)
    Parameters
    Type Name Description
    Int32 n
    Double m
    Double v
    Returns
    Type Description
    Double

    NormalCdfMoments(Int32, Double, Double)

    Compute int_0^Inf x^n N(x;m,v) dx for all integer n from 0 to nMax. Loses accuracy if m < -1.

    Declaration
    public static double[] NormalCdfMoments(int nMax, double m, double v)
    Parameters
    Type Name Description
    Int32 nMax
    Double m
    Double v
    Returns
    Type Description
    Double[]

    NormalVGMomentRatio(Int32, Int32, Double, Double)

    Declaration
    public static double NormalVGMomentRatio(int n, int a, double m, double v)
    Parameters
    Type Name Description
    Int32 n
    Int32 a
    Double m
    Double v
    Returns
    Type Description
    Double

    NormalVGMomentRatios(Int32, Int32, Double, Double)

    Compute int_0^Inf x^n N(x;m+v,v) VG(x;a) dx 2exp(m+v/2)/N(m/sqrt(v);0,1)

    Declaration
    public static double[][] NormalVGMomentRatios(int nMax, int aMax, double m, double v)
    Parameters
    Type Name Description
    Int32 nMax
    Int32 aMax
    Double m
    Double v
    Returns
    Type Description
    Double[][]

    NormalVGMoment[a][n] where a ranges from 1 to aMax, n ranges from 0 to nMax+aMax-a

    NormalVGMoments(Int32, Int32, Double, Double)

    Compute int_0^Inf x^n N(x;m+v,v) VG(x;a) dx 2exp(m+v/2). Loses accuracy if m < -1.

    Declaration
    public static double[][] NormalVGMoments(int nMax, int aMax, double m, double v)
    Parameters
    Type Name Description
    Int32 nMax
    Int32 aMax
    Double m
    Double v
    Returns
    Type Description
    Double[][]

    NormalVGMoment[a][n] where a ranges from 1 to aMax, n ranges from 0 to nMax+aMax-a

    NormalVGMomentTable(Int32, Int32, Double, Double, Double[])

    Declaration
    public static double[][] NormalVGMomentTable(int nMax, int aMax, double m, double v, double[] moments1)
    Parameters
    Type Name Description
    Int32 nMax
    Int32 aMax
    Double m
    Double v
    Double[] moments1
    Returns
    Type Description
    Double[][]

    SampleAverageConditional(Gaussian, Gaussian, Gamma)

    EP message to sample.

    Declaration
    [Quality(QualityBand.Experimental)]
    public static Gaussian SampleAverageConditional(Gaussian sample, Gaussian mean, Gamma variance)
    Parameters
    Type Name Description
    Gaussian sample

    Incoming message from sample.

    Gaussian mean

    Incoming message from mean. Must be a proper distribution. If uniform, the result will be uniform.

    Gamma variance

    Incoming message from variance. Must be a proper distribution. If uniform, the result will be uniform.

    Returns
    Type Description
    Gaussian

    The outgoing EP message to the sample argument.

    Remarks

    The outgoing message is a distribution matching the moments of sample as the random arguments are varied. The formula is proj[p(sample) sum_(mean,variance) p(mean,variance) factor(sample,mean,variance)]/p(sample).

    Exceptions
    Type Condition
    ImproperMessageException

    mean is not a proper distribution.

    ImproperMessageException

    variance is not a proper distribution.

    SampleAverageConditional(Gaussian, Double)

    EP message to sample.

    Declaration
    public static Gaussian SampleAverageConditional(Gaussian mean, double variance)
    Parameters
    Type Name Description
    Gaussian mean

    Incoming message from mean. Must be a proper distribution. If uniform, the result will be uniform.

    Double variance

    Constant value for variance.

    Returns
    Type Description
    Gaussian

    The outgoing EP message to the sample argument.

    Remarks

    The outgoing message is a distribution matching the moments of sample as the random arguments are varied. The formula is proj[p(sample) sum_(mean) p(mean) factor(sample,mean,variance)]/p(sample).

    Exceptions
    Type Condition
    ImproperMessageException

    mean is not a proper distribution.

    SampleAverageConditional(Gaussian, Double, Gamma)

    EP message to sample.

    Declaration
    [Quality(QualityBand.Experimental)]
    public static Gaussian SampleAverageConditional(Gaussian sample, double mean, Gamma variance)
    Parameters
    Type Name Description
    Gaussian sample

    Incoming message from sample.

    Double mean

    Constant value for mean.

    Gamma variance

    Incoming message from variance. Must be a proper distribution. If uniform, the result will be uniform.

    Returns
    Type Description
    Gaussian

    The outgoing EP message to the sample argument.

    Remarks

    The outgoing message is a distribution matching the moments of sample as the random arguments are varied. The formula is proj[p(sample) sum_(variance) p(variance) factor(sample,mean,variance)]/p(sample).

    Exceptions
    Type Condition
    ImproperMessageException

    variance is not a proper distribution.

    SampleAverageConditional(Double, Double)

    EP message to sample.

    Declaration
    public static Gaussian SampleAverageConditional(double mean, double variance)
    Parameters
    Type Name Description
    Double mean

    Constant value for mean.

    Double variance

    Constant value for variance.

    Returns
    Type Description
    Gaussian

    The outgoing EP message to the sample argument.

    Remarks

    The outgoing message is the factor viewed as a function of sample conditioned on the given values.

    SampleAverageConditional(Double, Double, TruncatedGaussian)

    EP message to sample.

    Declaration
    public static TruncatedGaussian SampleAverageConditional(double mean, double variance, TruncatedGaussian result)
    Parameters
    Type Name Description
    Double mean

    Constant value for mean.

    Double variance

    Constant value for variance.

    TruncatedGaussian result

    Modified to contain the outgoing message.

    Returns
    Type Description
    TruncatedGaussian

    result

    Remarks

    The outgoing message is the factor viewed as a function of sample conditioned on the given values.

    SampleAverageLogarithm(Gaussian, Double)

    VMP message to sample.

    Declaration
    public static Gaussian SampleAverageLogarithm(Gaussian mean, double variance)
    Parameters
    Type Name Description
    Gaussian mean

    Incoming message from mean. Must be a proper distribution. If uniform, the result will be uniform.

    Double variance

    Constant value for variance.

    Returns
    Type Description
    Gaussian

    The outgoing VMP message to the sample argument.

    Remarks

    The outgoing message is the exponential of the average log-factor value, where the average is over all arguments except sample. The formula is exp(sum_(mean) p(mean) log(factor(sample,mean,variance))).

    Exceptions
    Type Condition
    ImproperMessageException

    mean is not a proper distribution.

    SampleAverageLogarithm(Double, Double)

    VMP message to sample.

    Declaration
    public static Gaussian SampleAverageLogarithm(double mean, double variance)
    Parameters
    Type Name Description
    Double mean

    Constant value for mean.

    Double variance

    Constant value for variance.

    Returns
    Type Description
    Gaussian

    The outgoing VMP message to the sample argument.

    Remarks

    The outgoing message is the factor viewed as a function of sample conditioned on the given values.

    VarianceAverageConditional(Gaussian, Gaussian, Gamma)

    EP message to variance.

    Declaration
    [Quality(QualityBand.Experimental)]
    public static Gamma VarianceAverageConditional(Gaussian sample, Gaussian mean, Gamma variance)
    Parameters
    Type Name Description
    Gaussian sample

    Incoming message from sample. Must be a proper distribution. If uniform, the result will be uniform.

    Gaussian mean

    Incoming message from mean. Must be a proper distribution. If uniform, the result will be uniform.

    Gamma variance

    Incoming message from variance. Must be a proper distribution. If uniform, the result will be uniform.

    Returns
    Type Description
    Gamma

    The outgoing EP message to the variance argument.

    Remarks

    The outgoing message is a distribution matching the moments of variance as the random arguments are varied. The formula is proj[p(variance) sum_(sample,mean) p(sample,mean) factor(sample,mean,variance)]/p(variance).

    Exceptions
    Type Condition
    ImproperMessageException

    sample is not a proper distribution.

    ImproperMessageException

    mean is not a proper distribution.

    ImproperMessageException

    variance is not a proper distribution.

    VarianceAverageConditional(Gaussian, Double, Gamma)

    EP message to variance.

    Declaration
    [Quality(QualityBand.Experimental)]
    public static Gamma VarianceAverageConditional(Gaussian sample, double mean, Gamma variance)
    Parameters
    Type Name Description
    Gaussian sample

    Incoming message from sample. Must be a proper distribution. If uniform, the result will be uniform.

    Double mean

    Constant value for mean.

    Gamma variance

    Incoming message from variance. Must be a proper distribution. If uniform, the result will be uniform.

    Returns
    Type Description
    Gamma

    The outgoing EP message to the variance argument.

    Remarks

    The outgoing message is a distribution matching the moments of variance as the random arguments are varied. The formula is proj[p(variance) sum_(sample) p(sample) factor(sample,mean,variance)]/p(variance).

    Exceptions
    Type Condition
    ImproperMessageException

    sample is not a proper distribution.

    ImproperMessageException

    variance is not a proper distribution.

    VarianceAverageConditional(Double, Gaussian, Gamma)

    EP message to variance.

    Declaration
    [Quality(QualityBand.Experimental)]
    public static Gamma VarianceAverageConditional(double sample, Gaussian mean, Gamma variance)
    Parameters
    Type Name Description
    Double sample

    Constant value for sample.

    Gaussian mean

    Incoming message from mean. Must be a proper distribution. If uniform, the result will be uniform.

    Gamma variance

    Incoming message from variance. Must be a proper distribution. If uniform, the result will be uniform.

    Returns
    Type Description
    Gamma

    The outgoing EP message to the variance argument.

    Remarks

    The outgoing message is a distribution matching the moments of variance as the random arguments are varied. The formula is proj[p(variance) sum_(mean) p(mean) factor(sample,mean,variance)]/p(variance).

    Exceptions
    Type Condition
    ImproperMessageException

    mean is not a proper distribution.

    ImproperMessageException

    variance is not a proper distribution.

    VarianceAverageConditional(Double, Double)

    EP message to variance.

    Declaration
    public static GammaPower VarianceAverageConditional(double sample, double mean)
    Parameters
    Type Name Description
    Double sample

    Constant value for sample.

    Double mean

    Constant value for mean.

    Returns
    Type Description
    GammaPower

    The outgoing EP message to the variance argument.

    Remarks

    The outgoing message is the factor viewed as a function of variance conditioned on the given values.

    VarianceAverageConditional(Double, Double, Gamma)

    EP message to variance.

    Declaration
    [Quality(QualityBand.Experimental)]
    public static Gamma VarianceAverageConditional(double sample, double mean, Gamma variance)
    Parameters
    Type Name Description
    Double sample

    Constant value for sample.

    Double mean

    Constant value for mean.

    Gamma variance

    Incoming message from variance. Must be a proper distribution. If uniform, the result will be uniform.

    Returns
    Type Description
    Gamma

    The outgoing EP message to the variance argument.

    Remarks

    The outgoing message is the factor viewed as a function of variance conditioned on the given values.

    Exceptions
    Type Condition
    ImproperMessageException

    variance is not a proper distribution.

    VarianceGammaTimesGaussianIntegral(Double, Double, Double)

    Compute int_{-Inf}^{Inf} N(x;m,v) VG(x;a) dx * 2/N(m/sqrt(v);0,1)

    Declaration
    public static double VarianceGammaTimesGaussianIntegral(double a, double m, double v)
    Parameters
    Type Name Description
    Double a
    Double m
    Double v
    Returns
    Type Description
    Double

    VarianceGammaTimesGaussianMoments2(Double, Double, Double, out Double, out Double)

    Declaration
    public static void VarianceGammaTimesGaussianMoments2(double a, double m, double v, out double mu, out double vu)
    Parameters
    Type Name Description
    Double a
    Double m
    Double v
    Double mu
    Double vu

    VarianceGammaTimesGaussianMoments3(Double, Double, Double, out Double, out Double)

    Declaration
    public static void VarianceGammaTimesGaussianMoments3(double a, double m, double v, out double mu, out double vu)
    Parameters
    Type Name Description
    Double a
    Double m
    Double v
    Double mu
    Double vu

    VarianceGammaTimesGaussianMoments4(Double, Double, Double, out Double, out Double)

    Declaration
    public static void VarianceGammaTimesGaussianMoments4(double a, double m, double v, out double mu, out double vu)
    Parameters
    Type Name Description
    Double a
    Double m
    Double v
    Double mu
    Double vu

    VarianceGammaTimesGaussianMoments5(Double, Double, Double, out Double, out Double)

    Declaration
    public static void VarianceGammaTimesGaussianMoments5(double a, double m, double v, out double mu, out double vu)
    Parameters
    Type Name Description
    Double a
    Double m
    Double v
    Double mu
    Double vu
    In This Article
    Back to top Copyright © .NET Foundation. All rights reserved.