Search Results for

    Show / Hide Table of Contents

    Class GammaRatioOp_Laplace

    Provides outgoing messages for Ratio(Double, Double), given random arguments to the function.

    Inheritance
    Object
    GammaRatioOp_Laplace
    Inherited Members
    Object.Equals(Object)
    Object.Equals(Object, Object)
    Object.GetHashCode()
    Object.GetType()
    Object.MemberwiseClone()
    Object.ReferenceEquals(Object, Object)
    Object.ToString()
    Namespace: Microsoft.ML.Probabilistic.Factors
    Assembly: Microsoft.ML.Probabilistic.dll
    Syntax
    [FactorMethod(typeof(Factor), "Ratio", new Type[]{typeof(double), typeof(double)})]
    [Buffers(new string[]{"Q"})]
    [Quality(QualityBand.Experimental)]
    public static class GammaRatioOp_Laplace

    Methods

    AAverageConditional(Gamma, Gamma, Gamma, Gamma)

    EP message to a.

    Declaration
    public static Gamma AAverageConditional(Gamma ratio, Gamma A, Gamma B, Gamma q)
    Parameters
    Type Name Description
    Gamma ratio

    Incoming message from ratio.

    Gamma A

    Incoming message from a.

    Gamma B

    Incoming message from b. Must be a proper distribution. If uniform, the result will be uniform.

    Gamma q

    Buffer q.

    Returns
    Type Description
    Gamma

    The outgoing EP message to the a argument.

    Remarks

    The outgoing message is a distribution matching the moments of a as the random arguments are varied. The formula is proj[p(a) sum_(ratio,b) p(ratio,b) factor(ratio,a,b)]/p(a).

    Exceptions
    Type Condition
    ImproperMessageException

    B is not a proper distribution.

    BAverageConditional(Gamma, Gamma, Gamma, Gamma)

    EP message to b.

    Declaration
    public static Gamma BAverageConditional(Gamma ratio, Gamma A, Gamma B, Gamma q)
    Parameters
    Type Name Description
    Gamma ratio

    Incoming message from ratio. Must be a proper distribution. If uniform, the result will be uniform.

    Gamma A

    Incoming message from a. Must be a proper distribution. If uniform, the result will be uniform.

    Gamma B

    Incoming message from b. Must be a proper distribution. If uniform, the result will be uniform.

    Gamma q

    Buffer q.

    Returns
    Type Description
    Gamma

    The outgoing EP message to the b argument.

    Remarks

    The outgoing message is a distribution matching the moments of b as the random arguments are varied. The formula is proj[p(b) sum_(ratio,a) p(ratio,a) factor(ratio,a,b)]/p(b).

    Exceptions
    Type Condition
    ImproperMessageException

    ratio is not a proper distribution.

    ImproperMessageException

    A is not a proper distribution.

    ImproperMessageException

    B is not a proper distribution.

    LogAverageFactor(Gamma, Gamma, Gamma, Gamma)

    Evidence message for EP.

    Declaration
    public static double LogAverageFactor(Gamma ratio, Gamma A, Gamma B, Gamma q)
    Parameters
    Type Name Description
    Gamma ratio

    Incoming message from ratio.

    Gamma A

    Incoming message from a.

    Gamma B

    Incoming message from b.

    Gamma q

    Buffer q.

    Returns
    Type Description
    Double

    Logarithm of the factor's average value across the given argument distributions.

    Remarks

    The formula for the result is log(sum_(ratio,a,b) p(ratio,a,b) factor(ratio,a,b)).

    LogEvidenceRatio(Gamma, Gamma, Gamma, Gamma, Gamma)

    Evidence message for EP.

    Declaration
    public static double LogEvidenceRatio(Gamma ratio, Gamma A, Gamma B, Gamma to_ratio, Gamma q)
    Parameters
    Type Name Description
    Gamma ratio

    Incoming message from ratio.

    Gamma A

    Incoming message from a.

    Gamma B

    Incoming message from b.

    Gamma to_ratio

    Previous outgoing message to ratio.

    Gamma q

    Buffer q.

    Returns
    Type Description
    Double

    Logarithm of the factor's contribution the EP model evidence.

    Remarks

    The formula for the result is log(sum_(ratio,a,b) p(ratio,a,b) factor(ratio,a,b) / sum_ratio p(ratio) messageTo(ratio)). Adding up these values across all factors and variables gives the log-evidence estimate for EP.

    LogEvidenceRatio(Double, Gamma, Gamma, Gamma)

    Evidence message for EP.

    Declaration
    public static double LogEvidenceRatio(double ratio, Gamma A, Gamma B, Gamma q)
    Parameters
    Type Name Description
    Double ratio

    Constant value for ratio.

    Gamma A

    Incoming message from a.

    Gamma B

    Incoming message from b.

    Gamma q

    Buffer q.

    Returns
    Type Description
    Double

    Logarithm of the factor's contribution the EP model evidence.

    Remarks

    The formula for the result is log(sum_(a,b) p(a,b) factor(ratio,a,b)). Adding up these values across all factors and variables gives the log-evidence estimate for EP.

    Q(Gamma, Gamma, Gamma)

    Update the buffer Q.

    Declaration
    public static Gamma Q(Gamma ratio, Gamma A, Gamma B)
    Parameters
    Type Name Description
    Gamma ratio

    Incoming message from ratio.

    Gamma A

    Incoming message from a. Must be a proper distribution. If uniform, the result will be uniform.

    Gamma B

    Incoming message from b. Must be a proper distribution. If uniform, the result will be uniform.

    Returns
    Type Description
    Gamma

    New value of buffer Q.

    Remarks

    Exceptions
    Type Condition
    ImproperMessageException

    A is not a proper distribution.

    ImproperMessageException

    B is not a proper distribution.

    QInit()

    Initialize the buffer Q.

    Declaration
    public static Gamma QInit()
    Returns
    Type Description
    Gamma

    Initial value of buffer Q.

    Remarks

    RatioAverageConditional(Gamma, Gamma, Gamma)

    EP message to ratio.

    Declaration
    public static Gamma RatioAverageConditional(Gamma ratio, Gamma A, Gamma B)
    Parameters
    Type Name Description
    Gamma ratio

    Incoming message from ratio.

    Gamma A

    Incoming message from a. Must be a proper distribution. If uniform, the result will be uniform.

    Gamma B

    Incoming message from b. Must be a proper distribution. If uniform, the result will be uniform.

    Returns
    Type Description
    Gamma

    The outgoing EP message to the ratio argument.

    Remarks

    The outgoing message is a distribution matching the moments of ratio as the random arguments are varied. The formula is proj[p(ratio) sum_(a,b) p(a,b) factor(ratio,a,b)]/p(ratio).

    Exceptions
    Type Condition
    ImproperMessageException

    A is not a proper distribution.

    ImproperMessageException

    B is not a proper distribution.

    In This Article
    Back to top Copyright © .NET Foundation. All rights reserved.