Class GammaRatioOp
Provides outgoing messages for Ratio(Double, Double), given random arguments to the function.
Inherited Members
Namespace: Microsoft.ML.Probabilistic.Factors
Assembly: Microsoft.ML.Probabilistic.dll
Syntax
[FactorMethod(typeof(Factor), "Ratio", new Type[]{typeof(double), typeof(double)})]
[Quality(QualityBand.Preview)]
public static class GammaRatioOp
Methods
AAverageConditional(Gamma, Double)
EP message to a
.
Declaration
public static Gamma AAverageConditional(Gamma ratio, double B)
Parameters
Type | Name | Description |
---|---|---|
Gamma | ratio | Incoming message from |
Double | B | Constant value for |
Returns
Type | Description |
---|---|
Gamma | The outgoing EP message to the |
Remarks
The outgoing message is a distribution matching the moments of a
as the random arguments are varied. The formula is proj[p(a) sum_(ratio) p(ratio) factor(ratio,a,b)]/p(a)
.
Exceptions
Type | Condition |
---|---|
ImproperMessageException |
|
AAverageConditional(Double, Gamma)
EP message to a
.
Declaration
public static Gamma AAverageConditional(double ratio, Gamma B)
Parameters
Type | Name | Description |
---|---|---|
Double | ratio | Constant value for |
Gamma | B | Incoming message from |
Returns
Type | Description |
---|---|
Gamma | The outgoing EP message to the |
Remarks
The outgoing message is a distribution matching the moments of a
as the random arguments are varied. The formula is proj[p(a) sum_(b) p(b) factor(ratio,a,b)]/p(a)
.
AAverageConditional(Double, Double)
EP message to a
.
Declaration
public static Gamma AAverageConditional(double ratio, double B)
Parameters
Type | Name | Description |
---|---|---|
Double | ratio | Constant value for |
Double | B | Constant value for |
Returns
Type | Description |
---|---|
Gamma | The outgoing EP message to the |
Remarks
The outgoing message is the factor viewed as a function of a
conditioned on the given values.
BAverageConditional(Gamma, Double)
EP message to b
.
Declaration
public static GammaPower BAverageConditional(Gamma ratio, double A)
Parameters
Type | Name | Description |
---|---|---|
Gamma | ratio | Incoming message from |
Double | A | Constant value for |
Returns
Type | Description |
---|---|
GammaPower | The outgoing EP message to the |
Remarks
The outgoing message is a distribution matching the moments of b
as the random arguments are varied. The formula is proj[p(b) sum_(ratio) p(ratio) factor(ratio,a,b)]/p(b)
.
Exceptions
Type | Condition |
---|---|
ImproperMessageException |
|
BAverageConditional(Double, Gamma)
EP message to b
.
Declaration
public static Gamma BAverageConditional(double ratio, Gamma A)
Parameters
Type | Name | Description |
---|---|---|
Double | ratio | Constant value for |
Gamma | A | Incoming message from |
Returns
Type | Description |
---|---|
Gamma | The outgoing EP message to the |
Remarks
The outgoing message is a distribution matching the moments of b
as the random arguments are varied. The formula is proj[p(b) sum_(a) p(a) factor(ratio,a,b)]/p(b)
.
BAverageConditional(Double, Double)
EP message to b
.
Declaration
public static Gamma BAverageConditional(double ratio, double A)
Parameters
Type | Name | Description |
---|---|---|
Double | ratio | Constant value for |
Double | A | Constant value for |
Returns
Type | Description |
---|---|
Gamma | The outgoing EP message to the |
Remarks
The outgoing message is the factor viewed as a function of b
conditioned on the given values.
LogAverageFactor(Gamma, Gamma, Double)
Evidence message for EP.
Declaration
public static double LogAverageFactor(Gamma ratio, Gamma a, double b)
Parameters
Type | Name | Description |
---|---|---|
Gamma | ratio | Incoming message from |
Gamma | a | Incoming message from |
Double | b | Constant value for |
Returns
Type | Description |
---|---|
Double | Logarithm of the factor's average value across the given argument distributions. |
Remarks
The formula for the result is log(sum_(ratio,a) p(ratio,a) factor(ratio,a,b))
.
LogAverageFactor(Double, Gamma, Gamma)
Evidence message for EP.
Declaration
public static double LogAverageFactor(double ratio, Gamma A, Gamma B)
Parameters
Type | Name | Description |
---|---|---|
Double | ratio | Constant value for |
Gamma | A | Incoming message from |
Gamma | B | Incoming message from |
Returns
Type | Description |
---|---|
Double | Logarithm of the factor's average value across the given argument distributions. |
Remarks
The formula for the result is log(sum_(a,b) p(a,b) factor(ratio,a,b))
.
LogAverageFactor(Double, Gamma, Double)
Evidence message for EP.
Declaration
public static double LogAverageFactor(double ratio, Gamma a, double b)
Parameters
Type | Name | Description |
---|---|---|
Double | ratio | Constant value for |
Gamma | a | Incoming message from |
Double | b | Constant value for |
Returns
Type | Description |
---|---|
Double | Logarithm of the factor's average value across the given argument distributions. |
Remarks
The formula for the result is log(sum_(a) p(a) factor(ratio,a,b))
.
LogAverageFactor(Double, Double, Gamma)
Evidence message for EP.
Declaration
public static double LogAverageFactor(double ratio, double A, Gamma B)
Parameters
Type | Name | Description |
---|---|---|
Double | ratio | Constant value for |
Double | A | Constant value for |
Gamma | B | Incoming message from |
Returns
Type | Description |
---|---|
Double | Logarithm of the factor's average value across the given argument distributions. |
Remarks
The formula for the result is log(sum_(b) p(b) factor(ratio,a,b))
.
LogAverageFactor(Double, Double, Double)
Evidence message for EP.
Declaration
public static double LogAverageFactor(double ratio, double A, double B)
Parameters
Type | Name | Description |
---|---|---|
Double | ratio | Constant value for |
Double | A | Constant value for |
Double | B | Constant value for |
Returns
Type | Description |
---|---|
Double | Logarithm of the factor's average value across the given argument distributions. |
Remarks
The formula for the result is log(factor(ratio,a,b))
.
LogEvidenceRatio(Gamma, Gamma, Double)
Evidence message for EP.
Declaration
public static double LogEvidenceRatio(Gamma ratio, Gamma a, double b)
Parameters
Type | Name | Description |
---|---|---|
Gamma | ratio | Incoming message from |
Gamma | a | Incoming message from |
Double | b | Constant value for |
Returns
Type | Description |
---|---|
Double | Logarithm of the factor's contribution the EP model evidence. |
Remarks
The formula for the result is log(sum_(ratio,a) p(ratio,a) factor(ratio,a,b) / sum_ratio p(ratio) messageTo(ratio))
. Adding up these values across all factors and variables gives the log-evidence estimate for EP.
LogEvidenceRatio(Double, Gamma, Double)
Evidence message for EP.
Declaration
public static double LogEvidenceRatio(double ratio, Gamma a, double b)
Parameters
Type | Name | Description |
---|---|---|
Double | ratio | Constant value for |
Gamma | a | Incoming message from |
Double | b | Constant value for |
Returns
Type | Description |
---|---|
Double | Logarithm of the factor's contribution the EP model evidence. |
Remarks
The formula for the result is log(sum_(a) p(a) factor(ratio,a,b))
. Adding up these values across all factors and variables gives the log-evidence estimate for EP.
LogEvidenceRatio(Double, Double, Gamma)
Evidence message for EP.
Declaration
public static double LogEvidenceRatio(double ratio, double a, Gamma b)
Parameters
Type | Name | Description |
---|---|---|
Double | ratio | Constant value for |
Double | a | Constant value for |
Gamma | b | Incoming message from |
Returns
Type | Description |
---|---|
Double | Logarithm of the factor's contribution the EP model evidence. |
Remarks
The formula for the result is log(sum_(b) p(b) factor(ratio,a,b))
. Adding up these values across all factors and variables gives the log-evidence estimate for EP.
RatioAverageConditional(Gamma, Double)
EP message to ratio
.
Declaration
public static Gamma RatioAverageConditional(Gamma A, double B)
Parameters
Type | Name | Description |
---|---|---|
Gamma | A | Incoming message from |
Double | B | Constant value for |
Returns
Type | Description |
---|---|
Gamma | The outgoing EP message to the |
Remarks
The outgoing message is a distribution matching the moments of ratio
as the random arguments are varied. The formula is proj[p(ratio) sum_(a) p(a) factor(ratio,a,b)]/p(ratio)
.
Exceptions
Type | Condition |
---|---|
ImproperMessageException |
|
RatioAverageConditional(Double, Gamma)
EP message to ratio
.
Declaration
public static GammaPower RatioAverageConditional(double A, Gamma B)
Parameters
Type | Name | Description |
---|---|---|
Double | A | Constant value for |
Gamma | B | Incoming message from |
Returns
Type | Description |
---|---|
GammaPower | The outgoing EP message to the |
Remarks
The outgoing message is a distribution matching the moments of ratio
as the random arguments are varied. The formula is proj[p(ratio) sum_(b) p(b) factor(ratio,a,b)]/p(ratio)
.