Search Results for

    Show / Hide Table of Contents

    Class GammaProductOp

    Provides outgoing messages for Product(Double, Double), given random arguments to the function.

    Inheritance
    Object
    GammaProductOp
    Inherited Members
    Object.Equals(Object)
    Object.Equals(Object, Object)
    Object.GetHashCode()
    Object.GetType()
    Object.MemberwiseClone()
    Object.ReferenceEquals(Object, Object)
    Object.ToString()
    Namespace: Microsoft.ML.Probabilistic.Factors
    Assembly: Microsoft.ML.Probabilistic.dll
    Syntax
    [FactorMethod(typeof(Factor), "Product", new Type[]{typeof(double), typeof(double)})]
    [Quality(QualityBand.Preview)]
    public static class GammaProductOp

    Methods

    AAverageConditional(Gamma, Double)

    EP message to a.

    Declaration
    public static Gamma AAverageConditional(Gamma Product, double B)
    Parameters
    Type Name Description
    Gamma Product

    Incoming message from product. Must be a proper distribution. If uniform, the result will be uniform.

    Double B

    Constant value for b.

    Returns
    Type Description
    Gamma

    The outgoing EP message to the a argument.

    Remarks

    The outgoing message is a distribution matching the moments of a as the random arguments are varied. The formula is proj[p(a) sum_(product) p(product) factor(product,a,b)]/p(a).

    Exceptions
    Type Condition
    ImproperMessageException

    Product is not a proper distribution.

    AAverageConditional(GammaPower, Double, GammaPower)

    EP message to a.

    Declaration
    public static GammaPower AAverageConditional(GammaPower Product, double B, GammaPower result)
    Parameters
    Type Name Description
    GammaPower Product

    Incoming message from product. Must be a proper distribution. If uniform, the result will be uniform.

    Double B

    Constant value for b.

    GammaPower result

    Modified to contain the outgoing message.

    Returns
    Type Description
    GammaPower

    result

    Remarks

    The outgoing message is a distribution matching the moments of a as the random arguments are varied. The formula is proj[p(a) sum_(product) p(product) factor(product,a,b)]/p(a).

    Exceptions
    Type Condition
    ImproperMessageException

    Product is not a proper distribution.

    AAverageConditional(Double, Gamma)

    EP message to a.

    Declaration
    public static GammaPower AAverageConditional(double product, Gamma B)
    Parameters
    Type Name Description
    Double product

    Constant value for product.

    Gamma B

    Incoming message from b.

    Returns
    Type Description
    GammaPower

    The outgoing EP message to the a argument.

    Remarks

    The outgoing message is a distribution matching the moments of a as the random arguments are varied. The formula is proj[p(a) sum_(b) p(b) factor(product,a,b)]/p(a).

    AAverageConditional(Double, Double)

    EP message to a.

    Declaration
    public static Gamma AAverageConditional(double Product, double B)
    Parameters
    Type Name Description
    Double Product

    Constant value for product.

    Double B

    Constant value for b.

    Returns
    Type Description
    Gamma

    The outgoing EP message to the a argument.

    Remarks

    The outgoing message is the factor viewed as a function of a conditioned on the given values.

    AAverageConditional(Double, Double, GammaPower)

    EP message to a.

    Declaration
    public static GammaPower AAverageConditional(double Product, double B, GammaPower result)
    Parameters
    Type Name Description
    Double Product

    Constant value for product.

    Double B

    Constant value for b.

    GammaPower result

    Modified to contain the outgoing message.

    Returns
    Type Description
    GammaPower

    result

    Remarks

    The outgoing message is the factor viewed as a function of a conditioned on the given values.

    BAverageConditional(Gamma, Double)

    EP message to b.

    Declaration
    public static Gamma BAverageConditional(Gamma Product, double A)
    Parameters
    Type Name Description
    Gamma Product

    Incoming message from product. Must be a proper distribution. If uniform, the result will be uniform.

    Double A

    Constant value for a.

    Returns
    Type Description
    Gamma

    The outgoing EP message to the b argument.

    Remarks

    The outgoing message is a distribution matching the moments of b as the random arguments are varied. The formula is proj[p(b) sum_(product) p(product) factor(product,a,b)]/p(b).

    Exceptions
    Type Condition
    ImproperMessageException

    Product is not a proper distribution.

    BAverageConditional(GammaPower, Double, GammaPower)

    EP message to b.

    Declaration
    public static GammaPower BAverageConditional(GammaPower Product, double A, GammaPower result)
    Parameters
    Type Name Description
    GammaPower Product

    Incoming message from product. Must be a proper distribution. If uniform, the result will be uniform.

    Double A

    Constant value for a.

    GammaPower result

    Modified to contain the outgoing message.

    Returns
    Type Description
    GammaPower

    result

    Remarks

    The outgoing message is a distribution matching the moments of b as the random arguments are varied. The formula is proj[p(b) sum_(product) p(product) factor(product,a,b)]/p(b).

    Exceptions
    Type Condition
    ImproperMessageException

    Product is not a proper distribution.

    BAverageConditional(Double, Gamma)

    EP message to b.

    Declaration
    public static GammaPower BAverageConditional(double product, Gamma A)
    Parameters
    Type Name Description
    Double product

    Constant value for product.

    Gamma A

    Incoming message from a.

    Returns
    Type Description
    GammaPower

    The outgoing EP message to the b argument.

    Remarks

    The outgoing message is a distribution matching the moments of b as the random arguments are varied. The formula is proj[p(b) sum_(a) p(a) factor(product,a,b)]/p(b).

    BAverageConditional(Double, Double)

    EP message to b.

    Declaration
    public static Gamma BAverageConditional(double Product, double A)
    Parameters
    Type Name Description
    Double Product

    Constant value for product.

    Double A

    Constant value for a.

    Returns
    Type Description
    Gamma

    The outgoing EP message to the b argument.

    Remarks

    The outgoing message is the factor viewed as a function of b conditioned on the given values.

    BAverageConditional(Double, Double, GammaPower)

    EP message to b.

    Declaration
    public static GammaPower BAverageConditional(double Product, double A, GammaPower result)
    Parameters
    Type Name Description
    Double Product

    Constant value for product.

    Double A

    Constant value for a.

    GammaPower result

    Modified to contain the outgoing message.

    Returns
    Type Description
    GammaPower

    result

    Remarks

    The outgoing message is the factor viewed as a function of b conditioned on the given values.

    LogAverageFactor(Gamma, Gamma, Double)

    Evidence message for EP.

    Declaration
    public static double LogAverageFactor(Gamma product, Gamma a, double b)
    Parameters
    Type Name Description
    Gamma product

    Incoming message from product.

    Gamma a

    Incoming message from a.

    Double b

    Constant value for b.

    Returns
    Type Description
    Double

    Logarithm of the factor's average value across the given argument distributions.

    Remarks

    The formula for the result is log(sum_(product,a) p(product,a) factor(product,a,b)).

    LogAverageFactor(Gamma, Double, Gamma)

    Evidence message for EP.

    Declaration
    public static double LogAverageFactor(Gamma product, double a, Gamma b)
    Parameters
    Type Name Description
    Gamma product

    Incoming message from product.

    Double a

    Constant value for a.

    Gamma b

    Incoming message from b.

    Returns
    Type Description
    Double

    Logarithm of the factor's average value across the given argument distributions.

    Remarks

    The formula for the result is log(sum_(product,b) p(product,b) factor(product,a,b)).

    LogAverageFactor(GammaPower, GammaPower, Double)

    Evidence message for EP.

    Declaration
    public static double LogAverageFactor(GammaPower product, GammaPower a, double b)
    Parameters
    Type Name Description
    GammaPower product

    Incoming message from product.

    GammaPower a

    Incoming message from a.

    Double b

    Constant value for b.

    Returns
    Type Description
    Double

    Logarithm of the factor's average value across the given argument distributions.

    Remarks

    The formula for the result is log(sum_(product,a) p(product,a) factor(product,a,b)).

    LogAverageFactor(GammaPower, Double, GammaPower)

    Evidence message for EP.

    Declaration
    public static double LogAverageFactor(GammaPower product, double a, GammaPower b)
    Parameters
    Type Name Description
    GammaPower product

    Incoming message from product.

    Double a

    Constant value for a.

    GammaPower b

    Incoming message from b.

    Returns
    Type Description
    Double

    Logarithm of the factor's average value across the given argument distributions.

    Remarks

    The formula for the result is log(sum_(product,b) p(product,b) factor(product,a,b)).

    LogAverageFactor(Double, Gamma, Double)

    Evidence message for EP.

    Declaration
    public static double LogAverageFactor(double product, Gamma a, double b)
    Parameters
    Type Name Description
    Double product

    Constant value for product.

    Gamma a

    Incoming message from a.

    Double b

    Constant value for b.

    Returns
    Type Description
    Double

    Logarithm of the factor's average value across the given argument distributions.

    Remarks

    The formula for the result is log(sum_(a) p(a) factor(product,a,b)).

    LogAverageFactor(Double, GammaPower, Double)

    Evidence message for EP.

    Declaration
    public static double LogAverageFactor(double product, GammaPower a, double b)
    Parameters
    Type Name Description
    Double product

    Constant value for product.

    GammaPower a

    Incoming message from a.

    Double b

    Constant value for b.

    Returns
    Type Description
    Double

    Logarithm of the factor's average value across the given argument distributions.

    Remarks

    The formula for the result is log(sum_(a) p(a) factor(product,a,b)).

    LogAverageFactor(Double, Double, Gamma)

    Evidence message for EP.

    Declaration
    public static double LogAverageFactor(double product, double a, Gamma b)
    Parameters
    Type Name Description
    Double product

    Constant value for product.

    Double a

    Constant value for a.

    Gamma b

    Incoming message from b.

    Returns
    Type Description
    Double

    Logarithm of the factor's average value across the given argument distributions.

    Remarks

    The formula for the result is log(sum_(b) p(b) factor(product,a,b)).

    LogAverageFactor(Double, Double, GammaPower)

    Evidence message for EP.

    Declaration
    public static double LogAverageFactor(double product, double a, GammaPower b)
    Parameters
    Type Name Description
    Double product

    Constant value for product.

    Double a

    Constant value for a.

    GammaPower b

    Incoming message from b.

    Returns
    Type Description
    Double

    Logarithm of the factor's average value across the given argument distributions.

    Remarks

    The formula for the result is log(sum_(b) p(b) factor(product,a,b)).

    LogEvidenceRatio(Gamma, Gamma, Double)

    Evidence message for EP.

    Declaration
    public static double LogEvidenceRatio(Gamma product, Gamma a, double b)
    Parameters
    Type Name Description
    Gamma product

    Incoming message from product.

    Gamma a

    Incoming message from a.

    Double b

    Constant value for b.

    Returns
    Type Description
    Double

    Logarithm of the factor's contribution the EP model evidence.

    Remarks

    The formula for the result is log(sum_(product,a) p(product,a) factor(product,a,b) / sum_product p(product) messageTo(product)). Adding up these values across all factors and variables gives the log-evidence estimate for EP.

    LogEvidenceRatio(Gamma, Double, Gamma)

    Evidence message for EP.

    Declaration
    public static double LogEvidenceRatio(Gamma product, double a, Gamma b)
    Parameters
    Type Name Description
    Gamma product

    Incoming message from product.

    Double a

    Constant value for a.

    Gamma b

    Incoming message from b.

    Returns
    Type Description
    Double

    Logarithm of the factor's contribution the EP model evidence.

    Remarks

    The formula for the result is log(sum_(product,b) p(product,b) factor(product,a,b) / sum_product p(product) messageTo(product)). Adding up these values across all factors and variables gives the log-evidence estimate for EP.

    LogEvidenceRatio(GammaPower, GammaPower, Double)

    Evidence message for EP.

    Declaration
    public static double LogEvidenceRatio(GammaPower product, GammaPower a, double b)
    Parameters
    Type Name Description
    GammaPower product

    Incoming message from product.

    GammaPower a

    Incoming message from a.

    Double b

    Constant value for b.

    Returns
    Type Description
    Double

    Logarithm of the factor's contribution the EP model evidence.

    Remarks

    The formula for the result is log(sum_(product,a) p(product,a) factor(product,a,b) / sum_product p(product) messageTo(product)). Adding up these values across all factors and variables gives the log-evidence estimate for EP.

    LogEvidenceRatio(GammaPower, Double, GammaPower)

    Evidence message for EP.

    Declaration
    public static double LogEvidenceRatio(GammaPower product, double a, GammaPower b)
    Parameters
    Type Name Description
    GammaPower product

    Incoming message from product.

    Double a

    Constant value for a.

    GammaPower b

    Incoming message from b.

    Returns
    Type Description
    Double

    Logarithm of the factor's contribution the EP model evidence.

    Remarks

    The formula for the result is log(sum_(product,b) p(product,b) factor(product,a,b) / sum_product p(product) messageTo(product)). Adding up these values across all factors and variables gives the log-evidence estimate for EP.

    LogEvidenceRatio(Double, Gamma, Double)

    Evidence message for EP.

    Declaration
    public static double LogEvidenceRatio(double product, Gamma a, double b)
    Parameters
    Type Name Description
    Double product

    Constant value for product.

    Gamma a

    Incoming message from a.

    Double b

    Constant value for b.

    Returns
    Type Description
    Double

    Logarithm of the factor's contribution the EP model evidence.

    Remarks

    The formula for the result is log(sum_(a) p(a) factor(product,a,b)). Adding up these values across all factors and variables gives the log-evidence estimate for EP.

    LogEvidenceRatio(Double, GammaPower, Double)

    Evidence message for EP.

    Declaration
    public static double LogEvidenceRatio(double product, GammaPower a, double b)
    Parameters
    Type Name Description
    Double product

    Constant value for product.

    GammaPower a

    Incoming message from a.

    Double b

    Constant value for b.

    Returns
    Type Description
    Double

    Logarithm of the factor's contribution the EP model evidence.

    Remarks

    The formula for the result is log(sum_(a) p(a) factor(product,a,b)). Adding up these values across all factors and variables gives the log-evidence estimate for EP.

    LogEvidenceRatio(Double, Double, Gamma)

    Evidence message for EP.

    Declaration
    public static double LogEvidenceRatio(double product, double a, Gamma b)
    Parameters
    Type Name Description
    Double product

    Constant value for product.

    Double a

    Constant value for a.

    Gamma b

    Incoming message from b.

    Returns
    Type Description
    Double

    Logarithm of the factor's contribution the EP model evidence.

    Remarks

    The formula for the result is log(sum_(b) p(b) factor(product,a,b)). Adding up these values across all factors and variables gives the log-evidence estimate for EP.

    LogEvidenceRatio(Double, Double, GammaPower)

    Evidence message for EP.

    Declaration
    public static double LogEvidenceRatio(double product, double a, GammaPower b)
    Parameters
    Type Name Description
    Double product

    Constant value for product.

    Double a

    Constant value for a.

    GammaPower b

    Incoming message from b.

    Returns
    Type Description
    Double

    Logarithm of the factor's contribution the EP model evidence.

    Remarks

    The formula for the result is log(sum_(b) p(b) factor(product,a,b)). Adding up these values across all factors and variables gives the log-evidence estimate for EP.

    ProductAverageConditional(Gamma, Double)

    EP message to product.

    Declaration
    public static Gamma ProductAverageConditional(Gamma A, double B)
    Parameters
    Type Name Description
    Gamma A

    Incoming message from a. Must be a proper distribution. If uniform, the result will be uniform.

    Double B

    Constant value for b.

    Returns
    Type Description
    Gamma

    The outgoing EP message to the product argument.

    Remarks

    The outgoing message is a distribution matching the moments of product as the random arguments are varied. The formula is proj[p(product) sum_(a) p(a) factor(product,a,b)]/p(product).

    Exceptions
    Type Condition
    ImproperMessageException

    A is not a proper distribution.

    ProductAverageConditional(GammaPower, Double)

    EP message to product.

    Declaration
    public static GammaPower ProductAverageConditional(GammaPower A, double B)
    Parameters
    Type Name Description
    GammaPower A

    Incoming message from a. Must be a proper distribution. If uniform, the result will be uniform.

    Double B

    Constant value for b.

    Returns
    Type Description
    GammaPower

    The outgoing EP message to the product argument.

    Remarks

    The outgoing message is a distribution matching the moments of product as the random arguments are varied. The formula is proj[p(product) sum_(a) p(a) factor(product,a,b)]/p(product).

    Exceptions
    Type Condition
    ImproperMessageException

    A is not a proper distribution.

    ProductAverageConditional(Double, Gamma)

    EP message to product.

    Declaration
    public static Gamma ProductAverageConditional(double A, Gamma B)
    Parameters
    Type Name Description
    Double A

    Constant value for a.

    Gamma B

    Incoming message from b. Must be a proper distribution. If uniform, the result will be uniform.

    Returns
    Type Description
    Gamma

    The outgoing EP message to the product argument.

    Remarks

    The outgoing message is a distribution matching the moments of product as the random arguments are varied. The formula is proj[p(product) sum_(b) p(b) factor(product,a,b)]/p(product).

    Exceptions
    Type Condition
    ImproperMessageException

    B is not a proper distribution.

    ProductAverageConditional(Double, GammaPower)

    EP message to product.

    Declaration
    public static GammaPower ProductAverageConditional(double A, GammaPower B)
    Parameters
    Type Name Description
    Double A

    Constant value for a.

    GammaPower B

    Incoming message from b. Must be a proper distribution. If uniform, the result will be uniform.

    Returns
    Type Description
    GammaPower

    The outgoing EP message to the product argument.

    Remarks

    The outgoing message is a distribution matching the moments of product as the random arguments are varied. The formula is proj[p(product) sum_(b) p(b) factor(product,a,b)]/p(product).

    Exceptions
    Type Condition
    ImproperMessageException

    B is not a proper distribution.

    ProductAverageConditional(Double, Double)

    EP message to product.

    Declaration
    public static Gamma ProductAverageConditional(double a, double b)
    Parameters
    Type Name Description
    Double a

    Constant value for a.

    Double b

    Constant value for b.

    Returns
    Type Description
    Gamma

    The outgoing EP message to the product argument.

    Remarks

    The outgoing message is the factor viewed as a function of product conditioned on the given values.

    In This Article
    Back to top Copyright © .NET Foundation. All rights reserved.