Search Results for

    Show / Hide Table of Contents

    Class GammaFromShapeAndScaleOp

    Provides outgoing messages for Sample(Double, Double), given random arguments to the function.

    Inheritance
    Object
    GammaFromShapeAndScaleOp
    Inherited Members
    Object.Equals(Object)
    Object.Equals(Object, Object)
    Object.GetHashCode()
    Object.GetType()
    Object.MemberwiseClone()
    Object.ReferenceEquals(Object, Object)
    Object.ToString()
    Namespace: Microsoft.ML.Probabilistic.Factors
    Assembly: Microsoft.ML.Probabilistic.dll
    Syntax
    [FactorMethod(typeof(Gamma), "Sample", new Type[]{typeof(double), typeof(double)})]
    [Quality(QualityBand.Stable)]
    public static class GammaFromShapeAndScaleOp

    Methods

    AverageLogFactor(Gamma, Double, Double)

    Evidence message for VMP.

    Declaration
    public static double AverageLogFactor(Gamma sample, double shape, double scale)
    Parameters
    Type Name Description
    Gamma sample

    Incoming message from sample. Must be a proper distribution. If uniform, the result will be uniform.

    Double shape

    Constant value for shape.

    Double scale

    Constant value for scale.

    Returns
    Type Description
    Double

    Average of the factor's log-value across the given argument distributions.

    Remarks

    The formula for the result is sum_(sample) p(sample) log(factor(sample,shape,scale)). Adding up these values across all factors and variables gives the log-evidence estimate for VMP.

    Exceptions
    Type Condition
    ImproperMessageException

    sample is not a proper distribution.

    AverageLogFactor(Double, Double, Double)

    Evidence message for VMP.

    Declaration
    public static double AverageLogFactor(double sample, double shape, double scale)
    Parameters
    Type Name Description
    Double sample

    Constant value for sample.

    Double shape

    Constant value for shape.

    Double scale

    Constant value for scale.

    Returns
    Type Description
    Double

    Average of the factor's log-value across the given argument distributions.

    Remarks

    The formula for the result is log(factor(sample,shape,scale)). Adding up these values across all factors and variables gives the log-evidence estimate for VMP.

    LogAverageFactor(Gamma, Gamma)

    Evidence message for EP.

    Declaration
    public static double LogAverageFactor(Gamma sample, Gamma to_sample)
    Parameters
    Type Name Description
    Gamma sample

    Incoming message from sample.

    Gamma to_sample

    Outgoing message to sample.

    Returns
    Type Description
    Double

    Logarithm of the factor's average value across the given argument distributions.

    Remarks

    The formula for the result is log(sum_(sample) p(sample) factor(sample,shape,scale)).

    LogAverageFactor(Double, Double, Double)

    Evidence message for EP.

    Declaration
    public static double LogAverageFactor(double sample, double shape, double scale)
    Parameters
    Type Name Description
    Double sample

    Constant value for sample.

    Double shape

    Constant value for shape.

    Double scale

    Constant value for scale.

    Returns
    Type Description
    Double

    Logarithm of the factor's average value across the given argument distributions.

    Remarks

    The formula for the result is log(factor(sample,shape,scale)).

    LogEvidenceRatio(Gamma, Double, Double)

    Evidence message for EP.

    Declaration
    public static double LogEvidenceRatio(Gamma sample, double shape, double scale)
    Parameters
    Type Name Description
    Gamma sample

    Incoming message from sample.

    Double shape

    Constant value for shape.

    Double scale

    Constant value for scale.

    Returns
    Type Description
    Double

    Logarithm of the factor's contribution the EP model evidence.

    Remarks

    The formula for the result is log(sum_(sample) p(sample) factor(sample,shape,scale) / sum_sample p(sample) messageTo(sample)). Adding up these values across all factors and variables gives the log-evidence estimate for EP.

    LogEvidenceRatio(Double, Double, Double)

    Evidence message for EP.

    Declaration
    public static double LogEvidenceRatio(double sample, double shape, double scale)
    Parameters
    Type Name Description
    Double sample

    Constant value for sample.

    Double shape

    Constant value for shape.

    Double scale

    Constant value for scale.

    Returns
    Type Description
    Double

    Logarithm of the factor's contribution the EP model evidence.

    Remarks

    The formula for the result is log(factor(sample,shape,scale)). Adding up these values across all factors and variables gives the log-evidence estimate for EP.

    SampleAverageConditional(Double, Double)

    EP message to sample.

    Declaration
    public static Gamma SampleAverageConditional(double shape, double scale)
    Parameters
    Type Name Description
    Double shape

    Constant value for shape.

    Double scale

    Constant value for scale.

    Returns
    Type Description
    Gamma

    The outgoing EP message to the sample argument.

    Remarks

    The outgoing message is the factor viewed as a function of sample conditioned on the given values.

    SampleAverageLogarithm(Double, Double)

    VMP message to sample.

    Declaration
    public static Gamma SampleAverageLogarithm(double shape, double scale)
    Parameters
    Type Name Description
    Double shape

    Constant value for shape.

    Double scale

    Constant value for scale.

    Returns
    Type Description
    Gamma

    The outgoing VMP message to the sample argument.

    Remarks

    The outgoing message is the factor viewed as a function of sample conditioned on the given values.

    In This Article
    Back to top Copyright © .NET Foundation. All rights reserved.