Class ExpOp_LaplaceProp
Provides outgoing messages for Exp(Double), given random arguments to the function.
Inherited Members
Namespace: Microsoft.ML.Probabilistic.Factors
Assembly: Microsoft.ML.Probabilistic.dll
Syntax
[FactorMethod(typeof(Math), "Exp", new Type[]{typeof(double)})]
[Quality(QualityBand.Experimental)]
public static class ExpOp_LaplaceProp
Fields
ForceProper
Declaration
public static bool ForceProper
Field Value
Type | Description |
---|---|
Boolean |
Methods
DAverageConditional(Gamma, Gaussian, Gaussian)
EP message to d
.
Declaration
public static Gaussian DAverageConditional(Gamma exp, Gaussian d, Gaussian to_d)
Parameters
Type | Name | Description |
---|---|---|
Gamma | exp | Incoming message from |
Gaussian | d | Incoming message from |
Gaussian | to_d | Previous outgoing message to |
Returns
Type | Description |
---|---|
Gaussian | The outgoing EP message to the |
Remarks
The outgoing message is a distribution matching the moments of d
as the random arguments are varied. The formula is proj[p(d) sum_(exp) p(exp) factor(exp,d)]/p(d)
.
Exceptions
Type | Condition |
---|---|
ImproperMessageException |
|
ImproperMessageException |
|
ExpAverageConditional(Gamma, Gaussian, Gaussian)
EP message to exp
.
Declaration
public static Gamma ExpAverageConditional(Gamma exp, Gaussian d, Gaussian to_d)
Parameters
Type | Name | Description |
---|---|---|
Gamma | exp | Incoming message from |
Gaussian | d | Incoming message from |
Gaussian | to_d | Previous outgoing message to |
Returns
Type | Description |
---|---|
Gamma | The outgoing EP message to the |
Remarks
The outgoing message is a distribution matching the moments of exp
as the random arguments are varied. The formula is proj[p(exp) sum_(d) p(d) factor(exp,d)]/p(exp)
.
LogAverageFactor(Gamma, Gaussian, Gaussian)
Evidence message for EP.
Declaration
public static double LogAverageFactor(Gamma exp, Gaussian d, Gaussian to_d)
Parameters
Type | Name | Description |
---|---|---|
Gamma | exp | Incoming message from |
Gaussian | d | Incoming message from |
Gaussian | to_d | Previous outgoing message to |
Returns
Type | Description |
---|---|
Double | Logarithm of the factor's average value across the given argument distributions. |
Remarks
The formula for the result is log(sum_(exp,d) p(exp,d) factor(exp,d))
.
Exceptions
Type | Condition |
---|---|
ImproperMessageException |
|
ImproperMessageException |
|
LogEvidenceRatio(Gamma, Gaussian, Gaussian, Gamma)
Evidence message for EP.
Declaration
public static double LogEvidenceRatio(Gamma exp, Gaussian d, Gaussian to_d, Gamma to_exp)
Parameters
Type | Name | Description |
---|---|---|
Gamma | exp | Incoming message from |
Gaussian | d | Incoming message from |
Gaussian | to_d | Previous outgoing message to |
Gamma | to_exp | Previous outgoing message to |
Returns
Type | Description |
---|---|
Double | Logarithm of the factor's contribution the EP model evidence. |
Remarks
The formula for the result is log(sum_(exp,d) p(exp,d) factor(exp,d) / sum_exp p(exp) messageTo(exp))
. Adding up these values across all factors and variables gives the log-evidence estimate for EP.
Exceptions
Type | Condition |
---|---|
ImproperMessageException |
|
ImproperMessageException |
|