Search Results for

    Show / Hide Table of Contents

    Class ExpOp_Laplace

    Provides outgoing messages for Exp(Double), given random arguments to the function.

    Inheritance
    Object
    ExpOp_Laplace
    Inherited Members
    Object.Equals(Object)
    Object.Equals(Object, Object)
    Object.GetHashCode()
    Object.GetType()
    Object.MemberwiseClone()
    Object.ReferenceEquals(Object, Object)
    Object.ToString()
    Namespace: Microsoft.ML.Probabilistic.Factors
    Assembly: Microsoft.ML.Probabilistic.dll
    Syntax
    [FactorMethod(typeof(Math), "Exp", new Type[]{typeof(double)})]
    [Buffers(new string[]{"x"})]
    [Quality(QualityBand.Experimental)]
    public static class ExpOp_Laplace

    Methods

    DAverageConditional(Gamma, Gaussian, Double)

    EP message to d.

    Declaration
    public static Gaussian DAverageConditional(Gamma exp, Gaussian d, double x)
    Parameters
    Type Name Description
    Gamma exp

    Incoming message from exp. Must be a proper distribution. If uniform, the result will be uniform.

    Gaussian d

    Incoming message from d. Must be a proper distribution. If uniform, the result will be uniform.

    Double x

    Buffer x.

    Returns
    Type Description
    Gaussian

    The outgoing EP message to the d argument.

    Remarks

    The outgoing message is a distribution matching the moments of d as the random arguments are varied. The formula is proj[p(d) sum_(exp) p(exp) factor(exp,d)]/p(d).

    Exceptions
    Type Condition
    ImproperMessageException

    exp is not a proper distribution.

    ImproperMessageException

    d is not a proper distribution.

    ExpAverageConditional(Gamma, Gaussian, Double)

    EP message to exp.

    Declaration
    public static Gamma ExpAverageConditional(Gamma exp, Gaussian d, double x)
    Parameters
    Type Name Description
    Gamma exp

    Incoming message from exp.

    Gaussian d

    Incoming message from d.

    Double x

    Buffer x.

    Returns
    Type Description
    Gamma

    The outgoing EP message to the exp argument.

    Remarks

    The outgoing message is a distribution matching the moments of exp as the random arguments are varied. The formula is proj[p(exp) sum_(d) p(d) factor(exp,d)]/p(exp).

    LogAverageFactor(Gamma, Gaussian, Double)

    Evidence message for EP.

    Declaration
    public static double LogAverageFactor(Gamma exp, Gaussian d, double x)
    Parameters
    Type Name Description
    Gamma exp

    Incoming message from exp. Must be a proper distribution. If uniform, the result will be uniform.

    Gaussian d

    Incoming message from d. Must be a proper distribution. If uniform, the result will be uniform.

    Double x

    Buffer x.

    Returns
    Type Description
    Double

    Logarithm of the factor's average value across the given argument distributions.

    Remarks

    The formula for the result is log(sum_(exp,d) p(exp,d) factor(exp,d)).

    Exceptions
    Type Condition
    ImproperMessageException

    exp is not a proper distribution.

    ImproperMessageException

    d is not a proper distribution.

    LogEvidenceRatio(Gamma, Gaussian, Double, Gamma)

    Evidence message for EP.

    Declaration
    public static double LogEvidenceRatio(Gamma exp, Gaussian d, double x, Gamma to_exp)
    Parameters
    Type Name Description
    Gamma exp

    Incoming message from exp. Must be a proper distribution. If uniform, the result will be uniform.

    Gaussian d

    Incoming message from d. Must be a proper distribution. If uniform, the result will be uniform.

    Double x

    Buffer x.

    Gamma to_exp

    Previous outgoing message to exp.

    Returns
    Type Description
    Double

    Logarithm of the factor's contribution the EP model evidence.

    Remarks

    The formula for the result is log(sum_(exp,d) p(exp,d) factor(exp,d) / sum_exp p(exp) messageTo(exp)). Adding up these values across all factors and variables gives the log-evidence estimate for EP.

    Exceptions
    Type Condition
    ImproperMessageException

    exp is not a proper distribution.

    ImproperMessageException

    d is not a proper distribution.

    X(Gamma, Gaussian)

    Update the buffer x.

    Declaration
    public static double X(Gamma exp, Gaussian d)
    Parameters
    Type Name Description
    Gamma exp

    Incoming message from exp. Must be a proper distribution. If uniform, the result will be uniform.

    Gaussian d

    Incoming message from d. Must be a proper distribution. If uniform, the result will be uniform.

    Returns
    Type Description
    Double

    New value of buffer x.

    Remarks

    Exceptions
    Type Condition
    ImproperMessageException

    exp is not a proper distribution.

    ImproperMessageException

    d is not a proper distribution.

    X2(Gamma, Gaussian, Double)

    Declaration
    public static double X2(Gamma exp, Gaussian d, double x)
    Parameters
    Type Name Description
    Gamma exp

    Incoming message from exp. Must be a proper distribution. If uniform, the result will be uniform.

    Gaussian d

    Incoming message from d. Must be a proper distribution. If uniform, the result will be uniform.

    Double x

    Buffer x.

    Returns
    Type Description
    Double
    Remarks

    Exceptions
    Type Condition
    ImproperMessageException

    exp is not a proper distribution.

    ImproperMessageException

    d is not a proper distribution.

    XInit(Gaussian)

    Initialize the buffer x.

    Declaration
    public static double XInit(Gaussian d)
    Parameters
    Type Name Description
    Gaussian d

    Incoming message from d. Must be a proper distribution. If uniform, the result will be uniform.

    Returns
    Type Description
    Double

    Initial value of buffer x.

    Remarks

    Exceptions
    Type Condition
    ImproperMessageException

    d is not a proper distribution.

    In This Article
    Back to top Copyright © .NET Foundation. All rights reserved.