Search Results for

    Show / Hide Table of Contents

    Class DoublePlusOp

    Provides outgoing messages for the following factors:

    • Difference(Double, Double)
    • Plus(Double, Double)
    , given random arguments to the function.

    Inheritance
    Object
    DoublePlusOp
    Inherited Members
    Object.Equals(Object)
    Object.Equals(Object, Object)
    Object.GetHashCode()
    Object.GetType()
    Object.MemberwiseClone()
    Object.ReferenceEquals(Object, Object)
    Object.ToString()
    Namespace: Microsoft.ML.Probabilistic.Factors
    Assembly: Microsoft.ML.Probabilistic.dll
    Syntax
    [FactorMethod(typeof(Factor), "Plus", new Type[]{typeof(double), typeof(double)}, Default = true)]
    [FactorMethod(new string[]{"A", "Sum", "B"}, typeof(Factor), "Difference", new Type[]{typeof(double), typeof(double)}, Default = true)]
    [Quality(QualityBand.Mature)]
    public static class DoublePlusOp

    Methods

    AAverageConditional(Gaussian, Gaussian)

    EP message to difference.

    Declaration
    public static Gaussian AAverageConditional(Gaussian Sum, Gaussian b)
    Parameters
    Type Name Description
    Gaussian Sum

    Incoming message from a. Must be a proper distribution. If uniform, the result will be uniform.

    Gaussian b

    Incoming message from b. Must be a proper distribution. If uniform, the result will be uniform.

    Returns
    Type Description
    Gaussian

    The outgoing EP message to the difference argument.

    Remarks

    The outgoing message is a distribution matching the moments of difference as the random arguments are varied. The formula is proj[p(difference) sum_(a,b) p(a,b) factor(difference,a,b)]/p(difference).

    Exceptions
    Type Condition
    ImproperMessageException

    Sum is not a proper distribution.

    ImproperMessageException

    b is not a proper distribution.

    AAverageConditional(Gaussian, Double)

    EP message to difference.

    Declaration
    public static Gaussian AAverageConditional(Gaussian Sum, double b)
    Parameters
    Type Name Description
    Gaussian Sum

    Incoming message from a. Must be a proper distribution. If uniform, the result will be uniform.

    Double b

    Constant value for b.

    Returns
    Type Description
    Gaussian

    The outgoing EP message to the difference argument.

    Remarks

    The outgoing message is a distribution matching the moments of difference as the random arguments are varied. The formula is proj[p(difference) sum_(a) p(a) factor(difference,a,b)]/p(difference).

    Exceptions
    Type Condition
    ImproperMessageException

    Sum is not a proper distribution.

    AAverageConditional(Double, Gaussian)

    EP message to difference.

    Declaration
    public static Gaussian AAverageConditional(double Sum, Gaussian b)
    Parameters
    Type Name Description
    Double Sum

    Constant value for a.

    Gaussian b

    Incoming message from b. Must be a proper distribution. If uniform, the result will be uniform.

    Returns
    Type Description
    Gaussian

    The outgoing EP message to the difference argument.

    Remarks

    The outgoing message is a distribution matching the moments of difference as the random arguments are varied. The formula is proj[p(difference) sum_(b) p(b) factor(difference,a,b)]/p(difference).

    Exceptions
    Type Condition
    ImproperMessageException

    b is not a proper distribution.

    AAverageConditional(Double, Double)

    EP message to difference.

    Declaration
    public static Gaussian AAverageConditional(double Sum, double b)
    Parameters
    Type Name Description
    Double Sum

    Constant value for a.

    Double b

    Constant value for b.

    Returns
    Type Description
    Gaussian

    The outgoing EP message to the difference argument.

    Remarks

    The outgoing message is the factor viewed as a function of difference conditioned on the given values.

    BAverageConditional(Gaussian, Gaussian)

    EP message to b.

    Declaration
    public static Gaussian BAverageConditional(Gaussian Sum, Gaussian a)
    Parameters
    Type Name Description
    Gaussian Sum

    Incoming message from a. Must be a proper distribution. If uniform, the result will be uniform.

    Gaussian a

    Incoming message from difference. Must be a proper distribution. If uniform, the result will be uniform.

    Returns
    Type Description
    Gaussian

    The outgoing EP message to the b argument.

    Remarks

    The outgoing message is a distribution matching the moments of b as the random arguments are varied. The formula is proj[p(b) sum_(a,difference) p(a,difference) factor(difference,a,b)]/p(b).

    Exceptions
    Type Condition
    ImproperMessageException

    Sum is not a proper distribution.

    ImproperMessageException

    a is not a proper distribution.

    BAverageConditional(Gaussian, Double)

    EP message to b.

    Declaration
    public static Gaussian BAverageConditional(Gaussian Sum, double a)
    Parameters
    Type Name Description
    Gaussian Sum

    Incoming message from a. Must be a proper distribution. If uniform, the result will be uniform.

    Double a

    Constant value for difference.

    Returns
    Type Description
    Gaussian

    The outgoing EP message to the b argument.

    Remarks

    The outgoing message is a distribution matching the moments of b as the random arguments are varied. The formula is proj[p(b) sum_(a) p(a) factor(difference,a,b)]/p(b).

    Exceptions
    Type Condition
    ImproperMessageException

    Sum is not a proper distribution.

    BAverageConditional(Double, Gaussian)

    EP message to b.

    Declaration
    public static Gaussian BAverageConditional(double Sum, Gaussian a)
    Parameters
    Type Name Description
    Double Sum

    Constant value for a.

    Gaussian a

    Incoming message from difference. Must be a proper distribution. If uniform, the result will be uniform.

    Returns
    Type Description
    Gaussian

    The outgoing EP message to the b argument.

    Remarks

    The outgoing message is a distribution matching the moments of b as the random arguments are varied. The formula is proj[p(b) sum_(difference) p(difference) factor(difference,a,b)]/p(b).

    Exceptions
    Type Condition
    ImproperMessageException

    a is not a proper distribution.

    BAverageConditional(Double, Double)

    EP message to b.

    Declaration
    public static Gaussian BAverageConditional(double Sum, double a)
    Parameters
    Type Name Description
    Double Sum

    Constant value for a.

    Double a

    Constant value for difference.

    Returns
    Type Description
    Gaussian

    The outgoing EP message to the b argument.

    Remarks

    The outgoing message is the factor viewed as a function of b conditioned on the given values.

    LogAverageFactor(Gaussian, Gaussian)

    Evidence message for EP.

    Declaration
    public static double LogAverageFactor(Gaussian Sum, Gaussian to_sum)
    Parameters
    Type Name Description
    Gaussian Sum

    Incoming message from a. Must be a proper distribution. If uniform, the result will be uniform.

    Gaussian to_sum

    Outgoing message to sum.

    Returns
    Type Description
    Double

    Logarithm of the factor's average value across the given argument distributions.

    Remarks

    The formula for the result is log(sum_(a) p(a) factor(difference,a,b)).

    Exceptions
    Type Condition
    ImproperMessageException

    Sum is not a proper distribution.

    LogAverageFactor(Double, Gaussian, Gaussian)

    Evidence message for EP.

    Declaration
    public static double LogAverageFactor(double Sum, Gaussian a, Gaussian to_a)
    Parameters
    Type Name Description
    Double Sum

    Constant value for a.

    Gaussian a

    Incoming message from difference. Must be a proper distribution. If uniform, the result will be uniform.

    Gaussian to_a

    Outgoing message to a.

    Returns
    Type Description
    Double

    Logarithm of the factor's average value across the given argument distributions.

    Remarks

    The formula for the result is log(sum_(difference) p(difference) factor(difference,a,b)).

    Exceptions
    Type Condition
    ImproperMessageException

    a is not a proper distribution.

    LogAverageFactor(Double, Double, Gaussian, Gaussian)

    Evidence message for EP.

    Declaration
    public static double LogAverageFactor(double Sum, double a, Gaussian b, Gaussian to_b)
    Parameters
    Type Name Description
    Double Sum

    Constant value for a.

    Double a

    Constant value for difference.

    Gaussian b

    Incoming message from b.

    Gaussian to_b

    Outgoing message to b.

    Returns
    Type Description
    Double

    Logarithm of the factor's average value across the given argument distributions.

    Remarks

    The formula for the result is log(sum_(b) p(b) factor(difference,a,b)).

    LogAverageFactor(Double, Double, Double)

    Evidence message for EP.

    Declaration
    public static double LogAverageFactor(double Sum, double a, double b)
    Parameters
    Type Name Description
    Double Sum

    Constant value for a.

    Double a

    Constant value for difference.

    Double b

    Constant value for b.

    Returns
    Type Description
    Double

    Logarithm of the factor's average value across the given argument distributions.

    Remarks

    The formula for the result is log(factor(difference,a,b)).

    SumAverageConditional(Gaussian, Gaussian)

    EP message to a.

    Declaration
    public static Gaussian SumAverageConditional(Gaussian a, Gaussian b)
    Parameters
    Type Name Description
    Gaussian a

    Incoming message from difference. Must be a proper distribution. If uniform, the result will be uniform.

    Gaussian b

    Incoming message from b. Must be a proper distribution. If uniform, the result will be uniform.

    Returns
    Type Description
    Gaussian

    The outgoing EP message to the a argument.

    Remarks

    The outgoing message is a distribution matching the moments of a as the random arguments are varied. The formula is proj[p(a) sum_(difference,b) p(difference,b) factor(difference,a,b)]/p(a).

    Exceptions
    Type Condition
    ImproperMessageException

    a is not a proper distribution.

    ImproperMessageException

    b is not a proper distribution.

    SumAverageConditional(Gaussian, Double)

    EP message to a.

    Declaration
    public static Gaussian SumAverageConditional(Gaussian a, double b)
    Parameters
    Type Name Description
    Gaussian a

    Incoming message from difference. Must be a proper distribution. If uniform, the result will be uniform.

    Double b

    Constant value for b.

    Returns
    Type Description
    Gaussian

    The outgoing EP message to the a argument.

    Remarks

    The outgoing message is a distribution matching the moments of a as the random arguments are varied. The formula is proj[p(a) sum_(difference) p(difference) factor(difference,a,b)]/p(a).

    Exceptions
    Type Condition
    ImproperMessageException

    a is not a proper distribution.

    SumAverageConditional(Double, Gaussian)

    EP message to a.

    Declaration
    public static Gaussian SumAverageConditional(double a, Gaussian b)
    Parameters
    Type Name Description
    Double a

    Constant value for difference.

    Gaussian b

    Incoming message from b. Must be a proper distribution. If uniform, the result will be uniform.

    Returns
    Type Description
    Gaussian

    The outgoing EP message to the a argument.

    Remarks

    The outgoing message is a distribution matching the moments of a as the random arguments are varied. The formula is proj[p(a) sum_(b) p(b) factor(difference,a,b)]/p(a).

    Exceptions
    Type Condition
    ImproperMessageException

    b is not a proper distribution.

    SumAverageConditional(Double, Double)

    EP message to a.

    Declaration
    public static Gaussian SumAverageConditional(double a, double b)
    Parameters
    Type Name Description
    Double a

    Constant value for difference.

    Double b

    Constant value for b.

    Returns
    Type Description
    Gaussian

    The outgoing EP message to the a argument.

    Remarks

    The outgoing message is the factor viewed as a function of a conditioned on the given values.

    In This Article
    Back to top Copyright © .NET Foundation. All rights reserved.