Search Results for

    Show / Hide Table of Contents

    Class DoubleMinusVmpOp

    Provides outgoing messages for Difference(Double, Double), given random arguments to the function.

    Inheritance
    Object
    DoubleMinusVmpOp
    Inherited Members
    Object.Equals(Object)
    Object.Equals(Object, Object)
    Object.GetHashCode()
    Object.GetType()
    Object.MemberwiseClone()
    Object.ReferenceEquals(Object, Object)
    Object.ToString()
    Namespace: Microsoft.ML.Probabilistic.Factors
    Assembly: Microsoft.ML.Probabilistic.dll
    Syntax
    [FactorMethod(typeof(Factor), "Difference", new Type[]{typeof(double), typeof(double)})]
    [Quality(QualityBand.Stable)]
    public static class DoubleMinusVmpOp

    Methods

    AAverageLogarithm(Gaussian, Gaussian)

    VMP message to a.

    Declaration
    public static Gaussian AAverageLogarithm(Gaussian Difference, Gaussian b)
    Parameters
    Type Name Description
    Gaussian Difference

    Incoming message from difference. Must be a proper distribution. If uniform, the result will be uniform.

    Gaussian b

    Incoming message from b. Must be a proper distribution. If uniform, the result will be uniform.

    Returns
    Type Description
    Gaussian

    The outgoing VMP message to the a argument.

    Remarks

    The outgoing message is the exponential of the average log-factor value, where the average is over all arguments except a. Because the factor is deterministic, difference is integrated out before taking the logarithm. The formula is exp(sum_(b) p(b) log(sum_difference p(difference) factor(difference,a,b))).

    Exceptions
    Type Condition
    ImproperMessageException

    Difference is not a proper distribution.

    ImproperMessageException

    b is not a proper distribution.

    AAverageLogarithm(Gaussian, Double)

    VMP message to a.

    Declaration
    public static Gaussian AAverageLogarithm(Gaussian Difference, double b)
    Parameters
    Type Name Description
    Gaussian Difference

    Incoming message from difference. Must be a proper distribution. If uniform, the result will be uniform.

    Double b

    Constant value for b.

    Returns
    Type Description
    Gaussian

    The outgoing VMP message to the a argument.

    Remarks

    The outgoing message is the factor viewed as a function of a with difference integrated out. The formula is sum_difference p(difference) factor(difference,a,b).

    Exceptions
    Type Condition
    ImproperMessageException

    Difference is not a proper distribution.

    AAverageLogarithm(Double, Gaussian)

    VMP message to a.

    Declaration
    [NotSupported("Variational Message Passing does not support a Minus factor with fixed output and two random inputs.")]
    public static Gaussian AAverageLogarithm(double Difference, Gaussian b)
    Parameters
    Type Name Description
    Double Difference

    Constant value for difference.

    Gaussian b

    Incoming message from b. Must be a proper distribution. If uniform, the result will be uniform.

    Returns
    Type Description
    Gaussian

    The outgoing VMP message to the a argument.

    Remarks

    The outgoing message is the exponential of the average log-factor value, where the average is over all arguments except a. The formula is exp(sum_(b) p(b) log(factor(difference,a,b))).

    Exceptions
    Type Condition
    ImproperMessageException

    b is not a proper distribution.

    AAverageLogarithm(Double, Double)

    VMP message to a.

    Declaration
    public static Gaussian AAverageLogarithm(double Difference, double b)
    Parameters
    Type Name Description
    Double Difference

    Constant value for difference.

    Double b

    Constant value for b.

    Returns
    Type Description
    Gaussian

    The outgoing VMP message to the a argument.

    Remarks

    The outgoing message is the factor viewed as a function of a conditioned on the given values.

    AverageLogFactor()

    Evidence message for VMP.

    Declaration
    public static double AverageLogFactor()
    Returns
    Type Description
    Double

    Zero.

    Remarks

    The formula for the result is log(factor(difference,a,b)). Adding up these values across all factors and variables gives the log-evidence estimate for VMP.

    BAverageLogarithm(Gaussian, Gaussian)

    VMP message to b.

    Declaration
    public static Gaussian BAverageLogarithm(Gaussian Difference, Gaussian a)
    Parameters
    Type Name Description
    Gaussian Difference

    Incoming message from difference. Must be a proper distribution. If uniform, the result will be uniform.

    Gaussian a

    Incoming message from a. Must be a proper distribution. If uniform, the result will be uniform.

    Returns
    Type Description
    Gaussian

    The outgoing VMP message to the b argument.

    Remarks

    The outgoing message is the exponential of the average log-factor value, where the average is over all arguments except b. Because the factor is deterministic, difference is integrated out before taking the logarithm. The formula is exp(sum_(a) p(a) log(sum_difference p(difference) factor(difference,a,b))).

    Exceptions
    Type Condition
    ImproperMessageException

    Difference is not a proper distribution.

    ImproperMessageException

    a is not a proper distribution.

    BAverageLogarithm(Gaussian, Double)

    VMP message to b.

    Declaration
    public static Gaussian BAverageLogarithm(Gaussian Difference, double a)
    Parameters
    Type Name Description
    Gaussian Difference

    Incoming message from difference. Must be a proper distribution. If uniform, the result will be uniform.

    Double a

    Constant value for a.

    Returns
    Type Description
    Gaussian

    The outgoing VMP message to the b argument.

    Remarks

    The outgoing message is the factor viewed as a function of b with difference integrated out. The formula is sum_difference p(difference) factor(difference,a,b).

    Exceptions
    Type Condition
    ImproperMessageException

    Difference is not a proper distribution.

    BAverageLogarithm(Double, Gaussian)

    VMP message to b.

    Declaration
    [NotSupported("Variational Message Passing does not support a Minus factor with fixed output and two random inputs.")]
    public static Gaussian BAverageLogarithm(double Difference, Gaussian a)
    Parameters
    Type Name Description
    Double Difference

    Constant value for difference.

    Gaussian a

    Incoming message from a. Must be a proper distribution. If uniform, the result will be uniform.

    Returns
    Type Description
    Gaussian

    The outgoing VMP message to the b argument.

    Remarks

    The outgoing message is the exponential of the average log-factor value, where the average is over all arguments except b. The formula is exp(sum_(a) p(a) log(factor(difference,a,b))).

    Exceptions
    Type Condition
    ImproperMessageException

    a is not a proper distribution.

    BAverageLogarithm(Double, Double)

    VMP message to b.

    Declaration
    public static Gaussian BAverageLogarithm(double Difference, double a)
    Parameters
    Type Name Description
    Double Difference

    Constant value for difference.

    Double a

    Constant value for a.

    Returns
    Type Description
    Gaussian

    The outgoing VMP message to the b argument.

    Remarks

    The outgoing message is the factor viewed as a function of b conditioned on the given values.

    DifferenceAverageLogarithm(Gaussian, Gaussian)

    VMP message to difference.

    Declaration
    public static Gaussian DifferenceAverageLogarithm(Gaussian a, Gaussian b)
    Parameters
    Type Name Description
    Gaussian a

    Incoming message from a. Must be a proper distribution. If uniform, the result will be uniform.

    Gaussian b

    Incoming message from b. Must be a proper distribution. If uniform, the result will be uniform.

    Returns
    Type Description
    Gaussian

    The outgoing VMP message to the difference argument.

    Remarks

    The outgoing message is a distribution matching the moments of difference as the random arguments are varied. The formula is proj[sum_(a,b) p(a,b) factor(difference,a,b)].

    Exceptions
    Type Condition
    ImproperMessageException

    a is not a proper distribution.

    ImproperMessageException

    b is not a proper distribution.

    DifferenceAverageLogarithm(Gaussian, Double)

    VMP message to difference.

    Declaration
    public static Gaussian DifferenceAverageLogarithm(Gaussian a, double b)
    Parameters
    Type Name Description
    Gaussian a

    Incoming message from a. Must be a proper distribution. If uniform, the result will be uniform.

    Double b

    Constant value for b.

    Returns
    Type Description
    Gaussian

    The outgoing VMP message to the difference argument.

    Remarks

    The outgoing message is a distribution matching the moments of difference as the random arguments are varied. The formula is proj[sum_(a) p(a) factor(difference,a,b)].

    Exceptions
    Type Condition
    ImproperMessageException

    a is not a proper distribution.

    DifferenceAverageLogarithm(Double, Gaussian)

    VMP message to difference.

    Declaration
    public static Gaussian DifferenceAverageLogarithm(double a, Gaussian b)
    Parameters
    Type Name Description
    Double a

    Constant value for a.

    Gaussian b

    Incoming message from b. Must be a proper distribution. If uniform, the result will be uniform.

    Returns
    Type Description
    Gaussian

    The outgoing VMP message to the difference argument.

    Remarks

    The outgoing message is a distribution matching the moments of difference as the random arguments are varied. The formula is proj[sum_(b) p(b) factor(difference,a,b)].

    Exceptions
    Type Condition
    ImproperMessageException

    b is not a proper distribution.

    DifferenceAverageLogarithm(Double, Double)

    VMP message to difference.

    Declaration
    public static Gaussian DifferenceAverageLogarithm(double a, double b)
    Parameters
    Type Name Description
    Double a

    Constant value for a.

    Double b

    Constant value for b.

    Returns
    Type Description
    Gaussian

    The outgoing VMP message to the difference argument.

    Remarks

    The outgoing message is the factor viewed as a function of difference conditioned on the given values.

    In This Article
    Back to top Copyright © .NET Foundation. All rights reserved.