Search Results for

    Show / Hide Table of Contents

    Class DiscreteEnumFromDirichletOp<TEnum>

    Provides outgoing messages for DiscreteEnum<TEnum>(Vector), given random arguments to the function.

    Inheritance
    Object
    DiscreteEnumFromDirichletOp<TEnum>
    Inherited Members
    Object.Equals(Object)
    Object.Equals(Object, Object)
    Object.GetHashCode()
    Object.GetType()
    Object.MemberwiseClone()
    Object.ReferenceEquals(Object, Object)
    Object.ToString()
    Namespace: Microsoft.ML.Probabilistic.Factors
    Assembly: Microsoft.ML.Probabilistic.dll
    Syntax
    [FactorMethod(typeof(EnumSupport), "DiscreteEnum<>", new Type[]{})]
    [Quality(QualityBand.Stable)]
    public static class DiscreteEnumFromDirichletOp<TEnum>
    Type Parameters
    Name Description
    TEnum

    The type of the enumeration.

    Remarks

    This class provides operators which have Enum arguments.
    The rest are provided by DiscreteFromDirichletOp.

    Methods

    AverageLogFactor(TEnum, Dirichlet)

    Evidence message for VMP.

    Declaration
    public static double AverageLogFactor(TEnum sample, Dirichlet probs)
    Parameters
    Type Name Description
    TEnum sample

    Incoming message from Sample.

    Dirichlet probs

    Incoming message from Probs.

    Returns
    Type Description
    Double

    Average of the factor's log-value across the given argument distributions.

    Remarks

    The formula for the result is sum_(Sample,Probs) p(Sample,Probs) log(factor(Sample,Probs)). Adding up these values across all factors and variables gives the log-evidence estimate for VMP.

    AverageLogFactor(TEnum, Vector)

    Evidence message for VMP.

    Declaration
    public static double AverageLogFactor(TEnum sample, Vector probs)
    Parameters
    Type Name Description
    TEnum sample

    Incoming message from Sample.

    Vector probs

    Constant value for Probs.

    Returns
    Type Description
    Double

    Average of the factor's log-value across the given argument distributions.

    Remarks

    The formula for the result is sum_(Sample) p(Sample) log(factor(Sample,Probs)). Adding up these values across all factors and variables gives the log-evidence estimate for VMP.

    LogAverageFactor(TEnum, Dirichlet)

    Evidence message for EP.

    Declaration
    public static double LogAverageFactor(TEnum sample, Dirichlet probs)
    Parameters
    Type Name Description
    TEnum sample

    Incoming message from Sample.

    Dirichlet probs

    Incoming message from Probs.

    Returns
    Type Description
    Double

    Logarithm of the factor's average value across the given argument distributions.

    Remarks

    The formula for the result is log(sum_(Sample,Probs) p(Sample,Probs) factor(Sample,Probs)).

    LogAverageFactor(TEnum, Vector)

    Evidence message for EP.

    Declaration
    public static double LogAverageFactor(TEnum sample, Vector probs)
    Parameters
    Type Name Description
    TEnum sample

    Incoming message from Sample.

    Vector probs

    Constant value for Probs.

    Returns
    Type Description
    Double

    Logarithm of the factor's average value across the given argument distributions.

    Remarks

    The formula for the result is log(sum_(Sample) p(Sample) factor(Sample,Probs)).

    LogEvidenceRatio(TEnum, Dirichlet)

    Evidence message for EP.

    Declaration
    public static double LogEvidenceRatio(TEnum sample, Dirichlet probs)
    Parameters
    Type Name Description
    TEnum sample

    Incoming message from Sample.

    Dirichlet probs

    Incoming message from Probs.

    Returns
    Type Description
    Double

    Logarithm of the factor's contribution the EP model evidence.

    Remarks

    The formula for the result is log(sum_(Sample,Probs) p(Sample,Probs) factor(Sample,Probs) / sum_Sample p(Sample) messageTo(Sample)). Adding up these values across all factors and variables gives the log-evidence estimate for EP.

    LogEvidenceRatio(TEnum, Vector)

    Evidence message for EP.

    Declaration
    public static double LogEvidenceRatio(TEnum sample, Vector probs)
    Parameters
    Type Name Description
    TEnum sample

    Incoming message from Sample.

    Vector probs

    Constant value for Probs.

    Returns
    Type Description
    Double

    Logarithm of the factor's contribution the EP model evidence.

    Remarks

    The formula for the result is log(sum_(Sample) p(Sample) factor(Sample,Probs) / sum_Sample p(Sample) messageTo(Sample)). Adding up these values across all factors and variables gives the log-evidence estimate for EP.

    ProbsAverageConditional(TEnum, Dirichlet)

    EP message to Probs.

    Declaration
    public static Dirichlet ProbsAverageConditional(TEnum sample, Dirichlet result)
    Parameters
    Type Name Description
    TEnum sample

    Incoming message from Sample.

    Dirichlet result

    Modified to contain the outgoing message.

    Returns
    Type Description
    Dirichlet

    result

    Remarks

    The outgoing message is a distribution matching the moments of Probs as the random arguments are varied. The formula is proj[p(Probs) sum_(Sample) p(Sample) factor(Sample,Probs)]/p(Probs).

    ProbsAverageLogarithm(TEnum, Dirichlet)

    VMP message to Probs.

    Declaration
    public static Dirichlet ProbsAverageLogarithm(TEnum sample, Dirichlet result)
    Parameters
    Type Name Description
    TEnum sample

    Incoming message from Sample.

    Dirichlet result

    Modified to contain the outgoing message.

    Returns
    Type Description
    Dirichlet

    result

    Remarks

    The outgoing message is the exponential of the average log-factor value, where the average is over all arguments except Probs. The formula is exp(sum_(Sample) p(Sample) log(factor(Sample,Probs))).

    In This Article
    Back to top Copyright © .NET Foundation. All rights reserved.